asp网站毕业论文(推荐7篇)
119
2024 / 07 / 23
【摘要】目的:分析HIS数据的挖掘与统计对医院管理决策的意义。方法:首先对我院的管理人员和临床一线医护人员进行调查,并对HIS数据的挖掘统计实施前和实施后的评价进行统计,最后记录各项数据结果。结果:通过调查后发现,实施HIS数据的挖掘统计后,管理人员对医院管理的评分较比实施前更高,组间数据经验检验P<差异具有统计学意义。比对工作人员对医院管理的评分,实施后较比实施前更高,组间数据经验检验P<差异具有统计学意义。另外,比对实施前和实施后的优良率,前者低于后者,组间数据经验检验P<差异具有统计学意义。结论:HIS数据的挖掘统计可以使医院的管理决策得以改善,医院整体水平也会明显提升,可进一步实践和普及。
【关键词】HIS数据挖掘与统计;医院管理决策;意义分析
近年来,医院信息系统被广泛应用,同时将诸多历史重要信息进行回顾与收集,这些信息在医院日常工作中起着举足轻重的作用,同时也是医院管理决策的重要资源。通常情况下,人们通过分析大量的数据信息,对其进行整理和归类,在结果中找出医院经营与医疗业务的规律,在一定程度上对医院管理者决策有着重要意义[1]。鉴于此,此研究分析HIS数据的挖掘统计的价值,对我院的管理人员和工作人员进行调查,现将具体流程和研究结果进行以下表述。
1对象与方法
基础信息选择20xx年5月至20xx年5月的各部门领导和工作人员作为此次研究调查对象,调查方式以调查问卷为主,20xx年5月至20xx年5月期间为HIS数据的挖掘统计实施前,20xx年6月至20xx年5月为HIS数据的挖掘统计实施后。调查研究人员中,院领导5名,职能科室负责人5名,临床医技科室主任6名,临床医技科室护士长5名,临床医技科室主治医师职称20名,护理人员30名。方法HIS数据的挖掘统计主要流程为:①明确挖掘的最终目的,同时对医学领域和相关知识经验进行掌握。随后明确需要处理的问题,利用用户的角度,制定医学数据挖掘的最终目的,同时还需将结论的'判定依据进行拟定。②掌握数据挖掘所需的内容,同时将医院包含对象的基本情况进行查阅,将数据的初步收集过程予以实施。在此期间,还需将原始数据的实施情况予以保留,并对数据的属性予以明确[2]。③数据的准备。通常情况下,医学的数据较多,且具有复杂性,因此需事先整理原始数据,随后进行分析。对数据不同种类实施针对性方法进行预处理,随后依据数据挖掘的最终目的和自身特征将适宜的模型进行选择,让数据之间进行相互转换。④数据的挖掘。首先分析数据,利用科学合理的算法进行,同时该步骤在医学相关知识的探索中至关重要。实施该流程需事先描述相关概念,随后采用关联分析进行分类和预测,随后采用聚类分析和趋势分析,还可以利用孤立点分析和偏差分析等。值的注意的是,需证实挖掘的数据结果,让其合理性得以保证。⑤总结结果。首先讲述搜索到的医学知识,将其和最初的目标进行比较,这样可以保证实施期间的合理性。⑥知识的同化和具体应用。首先整理挖掘到的相关结果,并运用到HIS医学中,在此期间需进行计划性实施,并加以控制。判定依据[3]将管理人员和临床一线医护人员对医院的管理评分进行评价。结果超过90分,表示评价结果为优,结果介于70至89分之间,表示评价结果为良,结果低于70分,表示评价结果为差。数据检验及分析此次研究中涉及的所有数据均选择()进行检验和分析,各项管理评分以均数(±)表示,组间行T值检验,管理效果以(%)表示,组间行卡方检验,组间数据经验检验P<差异具有统计学意义。
2实验结果
实施前和实施后管理人员对医院管理的评价结果比对实施前和实施后不同管理人员对医院管理的评价,实施后的各项评分较比实施前明显较高,组间数据经验检验P<差异具有统计学意义。临床工作人员对医院管理的评价结果比对实施前和实施后临床一线医护人员对医院管理的评价,实施后的各项评分较比实施前明显较高,组间数据经验检验P<差异具有统计学意义。详情数据结果由表2所示。实施前和实施后的管理效果评价结果实施前,管理效果评价优良率经统计后为,实施HIS数据的挖掘统计后,管理效果评价优良率经统计后为,两组间数据经验检验P<差异具有统计学意义。详情数据结果由表3所示。
3讨论
近几年,HIS系统的应运而生,对医院的管理和工作起到促进作用,不仅使医院各个岗位的工作效果进行提高,同时加强了卫生资源的使用水平[4]。与此同时,HIS系统还可以使医疗差错的几率显著降低,患者的就医体检得以改善,规范医院的各项管理,从而使百姓对医院的信任度提升。除此之外,该系统的运用可以优化工作流程,加大医院管理力度的同时提升管理水平,从而提高医院核心竞争力[5]。决策系统属于全新的管理系统,其主要是解决半结构化决策问题,提升管理者的决策能力,使决策的质量进一步加强,将信息资源充分利用后将医院的整体管理水平得以改善[6]。从此次数据结果可以看出,通过实施HIS数据的挖掘统计后,不同管理人员和临床一线医护人员的各项评分较比实施前更高,组间数据经验检验P<差异具有统计学意义。这一研究结果说明,通过实施该系统后,可以将服务措施变得更加针对性,医院的组织结果也可以进行优化。与此同时,还可以使医院的工作效率进行提升,有助于和谐医患关系的构建。另外,从管理效果评价结果来看,实施后的优良率明显优于实施前的,这一研究结果充分体现了HIS数据的挖掘统计的应用可行性和优势。综上可知,HIS数据的挖掘统计可以使医院的管理决策得以改善,医院水平也会明显提升,具有较高的实践意义。
参考文献
[1]于树新,刘素温,邹向坤等.HIS数据的挖掘统计对医院管理决策的意义[J].中国医药导报,20xx(25):141-143,159.
[2]王瑞.基于HIS的门诊医疗数据仓库构建及多维分析和挖掘[D].南开大学,20xx.
[3]吴骋,罗虹,何倩等.对医疗数据为医院管理与临床诊疗提供支持的研究[J].中国数字医学,20xx,07(2):41-43.
[4]吕学明.数据挖掘在医务管理中的应用[D].山西大学,20xx.
[5]郭庆,谷岩.数据挖掘技术在医院信息系统的统计分析与决策中的应用[J].中国医疗设备,20xx,25(5):64-67.
[6]沈明霞,林雨芳,章光华等.中医院HIS系统数据的挖掘和应用[J].中国数字医学,20xx,06(4):81-82,85.
不过,有一些研究生在撰写学术论文时,总是有意或无意地忽略参考文献,认为这是可有可无的部分;
有的研究生对参考文献的标注很随意,容易出现遗漏信息或出现标注错误的情况;
有的研究生容易将“参考文献”和论文“注释”混为一谈;
甚至有的研究生认为,列出参考文献就是在“抄袭”他人的文章。
之所以会出现以上这些情况,说明许多研究生还没有搞清参考文献在论文写作中的重要地位。
今天,我们就来聊一聊“参考文献”的5个重要作用,希望能给大家带来一些启示。
0引言
随着我国信息化建设进程的不断推进,许多高校都已经建立起各类基于业务的数据库用于日常管理,作为应用广泛的新兴学科,数据挖掘技术在高校教育信息化中的应用前景较好,为高校的管理、建设、服务过程的绝学提供了全新而科学的分析途径。在新形势下,高校学生思政管理工作面临着巨大挑战,所以适时不断调整思想工作的途径,加强先进经验的交流,可以有效的提高高校思政工作的效果,对此,本文借助数据挖掘技术进行尝试,通过聚类结果分析,所挖掘到的信息对学生工作具有一定的参考价值。
1数据挖掘技术在思想政治教育中的实际应用
2数据挖掘技术在思政教育工作中具体方案实施
2.1确定数据挖掘对象收集并整理某大学2017年“辅导员工作考核量化表”,整理其中关于辅导员教育管理的120张考核量化表,尝试解答高校思政教育中存在的问题,经过对有价值数据的挖掘,得出结论为教学管理带来有效的指导价值。2.2数据采集从学校学生工作处,搜集2017年度“辅导员工作考核量化表”。2.3数据预处理“辅导员工作考核量化表”要求辅导员在“坚持标准,奖惩分明,客观公正的对待每一位学生。”“认真做好勤工助学活动。”“正确分析学生的思想动态”等几个指标项目中,根据辅导员的实际工作表现,划分为“优秀、良好、合格、较差、差”五等类型等级。最终获得比较完整的考核记录工作考核量化表117张。2.4数据转换在工作考核量化表中考核等级的`项目共15项,如何将数据合成到一个聚类分析的模式中非常关键,按照“管理态度”“管理能力”“管理方法”“管理效果”四方面属性来对工作考核量化表中的数据进行重新组合:其中“管理态度”=(坚持标准+与同学之间感情融洽+言谈得体+办事客观)/4“管理能力”=(准确掌握贫困生情况+准确掌握特殊群体+严格教育与查出违纪学生+胜任工作+组织学生做好评优工作)/5“管理方法”=(每周3次以上探入班级宿舍+积极参加检查学生早操+学生奖学金发放到位+有准备的与学生谈话+检查宿舍卫生)/5“管理效果”=(积极参加团活班会+课下了解学生思想状况+评论与建议)/3通过以上处理,可以将工作考核量化表关系到的十五个考评等级统一演化到四个属性中。然后针对117份数据样本信息的4个属性采取聚类挖掘的方法进行研究。通过样本预处理得到数据样本.2.5数据聚类挖掘数据的聚类挖掘采用划分方法中的经典算法K均值以及K中心点算法,其中K代表类别个数(K=3),主要挖掘思路为:将n个对象划分为K个簇,使同一簇中的对象具有较高的相似度,K均值算法主要是使用簇中对象的平均值作为参考值。K均值算法的复杂度可以通过进一步计算得出O(nkt),n代表簇的数量,t代表反复迭代的次数,在一般情况下,k与t都会远小于n。针对所要分析的数据样本,四类属性都是通过数据转换而得到的,所要的数据都是算术平均值,所以产生孤立点的可能性非常小,最终选用K均值的算法来运用于本研究的数据聚类中。一般情况下,K均值算法当局部取得最优解时会终止,所以一定要对数据样本进行改进,考察数据样本信息的综合比例分布情况,采取进一步措施对K均值算法进行改进得到三个等级样本,3数据挖掘算法流程3.1算法实现的流程算法实现流程。在K均值算法中,函数LoadPatterns的作用主要是将数据信息装载到程序中,目的是为了从数据库文件中读取相关信息,并且将文件中的数据转换成样本数组。函数RunK-Means()的作用是算法的主程序,将所有对象同簇中心距离进行对比,然后将对象划分到最近的簇中。函数Show-Centers()代表算法所描述的聚类中心。函数ShowClusters()表示样本的标识符号[4]。3.2主控程序RunKMeans()的调用从而找到最短距离的簇,然后运用DistributeSam-ples()将所有对象划分到最近的簇当中,算出所有簇中对象的平均值,作为新的质心,如果所有新的质心不发生改变,则聚类结束。
3聚类结果分析
本文运用K均值算法对120个数据通过数据转换得到的样本数据进行分析,对管理态度、管理能力、管理方法、管理效果4个属性进行数据挖掘聚类,设置初始k值为3,最终挖掘到的结果.根据以上结果,每个簇所包括的数据样本最后的比例分布范围如下:簇1(较好)共计36个样本,删除定义样本,剩余35个数据样本,占35/117=30%。簇2(中等)共计74个样本,删除一个标准样本,剩余73个数据样本,占73/117=62%。簇3(较差)共计10个样本,删除一个标准样本,剩余9个数据样本,占9/117=8%“管理态度”=0.77*30%+0.61*62%+0.31*8%=0.634“管理能力”=0.77*30%+0.57*62%+0.31*8%=0.6092“管理方法”=0.74*30%+0.54*62%+0.28*8%=0.5792“管理效果”=0.79*30%+0.56*62%+0.30*8%=0.6082从总体得分由高到低排序为:管理态度、管理能力、管理效果、管理方法。总体上证明该校的思政管理水平属于中等偏上的。
4总结
参考文献
[1]刘强珺,丁养斌.基于数据挖掘技术的高校思政教育管理研究[J].电子测试,2015(1):101-103.
[2]范宸西,韩松洋.思想政治教育在高校内涵式发展中的重新定位[J]._珠海市委党校珠海市行政学院学报,2015(4):50-54.
[3]吴小龙,张丽丽.大数据视角下高校思想政治理论教育创新[J].江西理工大学学报,2017(8):20-23.
[4]李平荣.大数据时代的数据挖掘技术与应用[J].重庆三峡学院学报,2014(5):159.
[5]舒正渝.浅谈数据挖掘技术及其应用[J].中国西部科技,2010(2):148-150.
一、 选题的目的和意义:
(一)选题的目的:
随着现代网络技术的发展,集团企业经营的复杂化、高效化、快速化不断加深,这给传统的财务管理模式带来了巨大的挑战,现在集团企业亟需一种高效、高速的财务管理模式,但是传统的财务管理模式越来越不能满足现代集团企业的需求,而基于互联网的网络财务管理模式正是基于次背景下诞生。网络财务是一种基于网络计算的技术,以整合实现集团企业电子商务为目标,能够替代互联网环境下会计核算、财务管理模式及其各种功能的财务管理软件系统。网络财务下的财务管理是用电子信息技术将财务活动和网络联系起来,在网络上实现WEB记账、实时查帐、在线资金往来、动态报表,并通过财务和业务协同实现资金统筹使用、财务结算高效、业务处理一体化。网络财务还可以形成一个以客户为中心的、集团企业内外协同运作的在线供应链,对供应商可以进行动态管理,集团企业全面掌握货源,减少集团企业的成本开支。在线的客户管理关系,将帮助集团企业形成以客户为中心的理念,建立互动式的动态客户档案,实现网上的资金划拨、网上销售,建立服务电子商务的客户关系管理方式。
(二)选题的意义:
(1)网络财务充分利用了互联网,拓展了财务管理的空间
在网络环境下,会计数据的载体由纸张变为磁介质或光电介质载体,发展到网页形式,所有的物理距离变为鼠标距离,财务管理能力可以延伸到不同地域的任何一个结点,会计信息的传输不再受距离的限制。这种空间的扩展,使得财务管理从分散走向集中,从集团企业内部延伸到集团企业外部。
(2)网络财务利用财务管理软件,大大减轻了财会人员的工作负担,提高了财务管理的工作效率 网络财务的应用不仅突破了空间观念,也将不受时间的限制。会计核算将从事后的静态核算达到集中的动态核算,极大地丰富了会计信息内容并提高了会计信息的价值,因而能便捷地产生各种反映集团企业经营和资金状况的动态财务报表、财务报告,使得集团企业财务管理从静态走向动态,在本质上极大地延伸了财务管理的质量。
(3)电子商务模式下,财务软件从部门级应用向集团企业级应用的逐步强化使得财务信息与其他业务信息间也会逐步实现彼此连接,相互共享,管理,业务,采购,财务各部门之间的协同发展,这也是现代集团企业管理的目标之一。 在公司内部财务与业务一体化的同时,网络财务系统还可以实现供应商、集团企业、客户以及物流机构之间的协作,通过信息数据和财务数据在网络中的瞬时传递,实现网上采购、网上订货、网上销售等一系列网上服务的业务方式。 综上所述,财务工作网络化,降低了管理费用,提高了工作效率,大大增强了集团企业的凝聚力和竞争力,顺应和推动了社会经济的发展,是集团企业财务管理的一次重大进步。
二、 国内外研究现状简述:
出生于美国的未来会计学家汉弗莱H.纳什,在20xx年出版了他的代表作《未来会计》 。在此著作中,正式提出网络财务的概念和网络财务管理将在未来集团企业财务管理中所发挥的巨大作用。随着网络技术的快速发展,给传统的经营模式带来巨大的冲击,而在更早的时候后,西方学者立足于互联网提出网络财务的概念,并将其运用于现实中的企业中。由于当时的技术条件所限制,不能实现设想的网络上WEB记账、实时查帐、在线资金往来、动态报表,而进入21世纪,互联网的高速发展,网络技术的革新,财务软件的不断升级,给网络财务的管理模式的探索和发展带来新的契机。
国内的研究稍晚于国外,但是互联网在中国的快速发展,以及中国电子商务的兴起,使中国对网络财务的研究不断深入。尤其是电子商务的崛起,给网络财务的发展带来了巨大的机遇。
三、毕业设计(论文)所采用的研究方法和手段:
(一)研究方法
(1)相关文献的收集及整理。根据论文题目,查询网络财务的相关书籍,并在网上收集相关资料,全面了解网络财务的相关理论。
(2)强化相关概念。分析、研究、归纳所收集的资料,并进去具体集团企业进行实地调研,了解集团企业如何合理进行网络财务。初步形成论文的结构体系。
(3)根据初步形成的论文体系,对网络财务相关文献的研究和对具体集团企业的实际情况进行总体分析。重点分析集团企业网络财务制定方法、制定策略原因及对集团企业带来的影响,并针对网络财务对集团企业财务活动的发展进行思考和研究。再对论文结构体系进行调整和修改。
(4)形成对策方案。
(5)对论文进行最后的修改,在理论与实际联系的基础上,使论文论述合理、逻辑关联、语句通顺,最终定稿。
(二)研究方法或措施
(1)比较分析法
网络财务方案可行与否需要综合考虑,因素之一就是要将纳税前后的效果进行比较,也要对不同纳税策略进行比较,分析得出策略的可行性和现实性,只有这样才能对筹收筹划效益给予公正的评判,从而形成理论更好地指导实践。
(2)系统研究法
系统研究方法,就是将网络财务置于集团企业财务管理系统中,从系统观点出发综合考察网络财务。网络财务只是集团企业财务管理中的一个子系统,网络财务能否成功完成,必须立足集团企业全局考虑整体利益,综合衡量集团企业税收策划对集团企业经营的整体影响,只有将网络财务置于整个集团企业财务决策中分析,才能制定和选择最佳的网络财务策略。
四、主要参考文献与资料获得情况:
这种论证作用,既可以是将已有研究成果作为自己新理论的支撑,也可以是否定前人的学术理论划观点,其目的就在于为拓宽后人的研学思路。
我们知道,学术论文都特别强调观点准确、论据充分、数据准确,而要实现这一目的,最简单、最直接、最有效的做法引用可靠性强的参考文献。
毫不夸张地说,优秀的参考文献是学术论文或论著可以立起来的有力基础。
因此,研究生应树立起“参考文献是学术论文的基础”的强烈意识,从写作伊始,就高度重视参考文献及其出处来源问题。
题目:数据挖掘技术在神经根型颈椎病方剂研究中的优势及应用进展
关键词:数据挖掘技术; 神经根型颈椎病; 方剂; 综述;
1 数据挖掘技术简介
数据挖掘技术[1] (Knowledge Discovery in Datebase, KKD) , 是一种新兴的信息处理技术, 它融汇了人工智能、模式别、模糊数学、数据库、数理统计等多种技术方法, 专门用于海量数据的处理, 从大量的、不完全的、有噪声的、模糊的、随机的数据集中, 提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识, 其目的是发现规律而不是验证假设。数据挖掘技术主要适用于庞大的数据库的研究, 其特点在于:基于数据分析方法角度的分类, 其本质属于观察性研究, 数据来源于日常诊疗工作资料, 应用的技术较传统研究更先进, 分析工具、理论模型与传统研究区别较大。其操作步骤包括[2]:选择数据, 数据处理, 挖掘分析, 结果解释, 其中结果解释是数据挖掘技术研究的关键。其方法包括分类、聚类、关联、序列、决策树、贝斯网络、因子、辨别等分析[3], 其结果通常表示为概念、规则、规律、模式、约束、可视化等形式图[4]。当今数据挖掘技术的方向主要在于:特定数据挖掘, 高效挖掘算法, 提高结果的有效性、确定性和表达性, 结果的可视化, 多抽象层上的交互式数据挖掘, 多元数据挖掘及数据的安全性和保密性。因其优势和独特性被运用于多个领域中, 且结果运用后取得显着成效, 因此越来越多的中医方剂研究者将其运用于方剂中药物的研究。
2 数据挖掘术在神经根型颈椎病治方研究中的优势
中医对于神经根型颈椎病的治疗准则为辨证论治, 从古至今神经根型颈椎病的中医证型有很多, 其治方是集中医之理、法、方、药为一体的数据集合, 具有以“方-药-证”为核心的多维结构。方剂配伍本质上表现为方与方、方与药、药与药、药与剂量, 以及方药与证、病、症交叉错综的关联与对应[5], 而中医方剂讲究君臣佐使的配伍, 药物有升降沉浮, 四气五味及归经之别, 对于神经根型颈椎病的治疗, 治方中药物的种类、炮制方法、用量、用法等都是千变万化的, 而这些海量、模糊、看似随机的药物背后隐藏着对临床有用的信息和规律, 但这些大数据是无法在可承受的时间范围内可用常规软件工具进行捕捉、管理和处理的, 是需要一个新处理模式才能具有更强的决策力、洞察力和流程优化能力, 而数据挖掘技术有可能从这些海量的的数据中发现新知识, 揭示背后隐藏的关系和规则, 并且对未知的情况进行预测[6]。再者, 中医辨治充满非线性思维, “方-药-证”间的多层关联、序列组合、集群对应, 形成了整体论的思维方式和原则, 而数据挖掘技术数据挖掘在技术线路上与传统数据处理方法不同在于其能对数据库内的数据以线性和非线性方式解析, 尤善处理模糊的、非量化的数据。例如赵睿曦等[7]在研究张氏骨伤治疗腰椎间盘突出症的用药规律时, 选取了100张治方, 因该病病因病机复杂, 证候不一, 骨伤名师张玉柱先生对该病的治则治法、药物使用是不同的。因此他们利用Excel建立方证数据库, 采用SPPS 软件对这些数据的用药频次、药物关联规则及药物聚类进行分析, 最后总结出张氏骨伤治疗腰椎间盘突出症遵循病从肝治、病从血治、标本兼治的原则, 也归纳出治疗三种不同证型的腰突症的三类自拟方。由此看出数据挖掘技术在方剂研究中的应用对数据背后信息、规律等的挖掘及名家经验的推广具有重大意义, 因此数据挖掘技术在神经根型颈椎病的治方研究中也同样发挥着巨大的作用。
3 数据挖掘技术在神经根型颈椎治方中的应用进展
神经根型颈椎病在所有颈椎病中最常见, 约占50%~60%[8], 医家对其治方的研究也是不计其数。近年来数据挖掘技术也被运用于其治方研究中, 笔者通过万方、中国知网等总共检索出以下几篇文献, 虽数量不多但其优势明显。刘向前等[9]在挖掘古方治疗神经根型颈椎病的用药规律时, 通过检索《中华医典》并从中筛选以治疗颈项肩臂痛为主的古方219首并建立数据库, 对不同证治古方的用药类别、总味数、单味药使用频数及药对 (组) 出现频数进行统计, 总结出风寒湿痹证、痰湿阻痹证、寒湿阻滞证、正虚不足证的用药特点, 得出解表药、祛风湿药、活血化瘀药、补虚药是治疗颈项肩臂痛古方组成的主要药物。古为今用, 该研究对于现代医家在治疗该病中有很好的借鉴和参考意义。齐兵献等[10]检索CNKI (1980-20xx年) 相关文献中治疗神经根型颈椎病的方剂建立数据库, 采用统计软件这些治方常用药物使用频次频率、性味频率、归经频率分析比较, 治疗神经根型颈椎病的中药共计99味, 使用频次479味次;所用药物种类依次以补益药、活血化瘀药、祛风湿药运用最多, 其中药味以辛、苦为主, 药性以温、寒为主, 归经以肝、脾、心为主, 而本病以肝肾亏虚, 气血瘀滞为主, 临床以补益药、活血化瘀药、祛风湿药等中药运用最多。这对于医家治疗该病选用药物的性味、归经等具有指导意义。陈元川等[11]检索20xx年1月至20xx年3月发表的以单纯口服中药治疗神经根型颈椎病的有关文献, 对其中的方剂和药物进行统计、归类、分析, 最终纳入32首方剂, 涉及111味中药, 补气药、发散风寒药、活血止痛药、补血药等使用频次较高;葛根、白芍、黄芪、当归、桂枝等药物使用频次较高, 证实与古方桂枝加葛根汤主药相同, 且该方扶阳解表的.治法与该研究得出的扶正祛邪的结果相吻合, 同时也证实石氏伤科强调治伤科病当“以气为主, 以血为先”等正确性。所以大数据背后的规律和关系在很多方面古今是一致的, 同时数据依据的支持也为现代神经根型颈椎病治疗提供有力的保障。谢辉等[12]收集20xx至20xx年10月3日的166张治疗神经根型颈椎病的治方建立数据库, 采用关联规则算法、复杂系统熵聚类等无监督数据挖掘方法, 利用中医传承辅助平台 (TCMISS) 软件分析处方中各种药物的使用频次、药物之间的关联规则、核心药物组合和新处方, 从中挖掘出治疗该病中医中的常用药物、药对, 阐明了治疗该病以解肌散寒药、补气活血药、祛风胜湿药和温经通络药为主, 治法主要包括解肌舒筋、益气活血和补益肝肾, 这一方面很清晰明了地展示了药物使用频率、药物之间的联系, 证实其与很多古代经典中治疗神经根型颈椎病的治则、治法及用药规律是吻合的, 是临床用药的积累和升华, 可有效地指导临床并提高疗效;另一方面也为中药新药的创制提供处方来源, 指导新药研发[13]。
4 小结
数据挖掘技术作为一种新型的研究技术, 在神经根型颈椎病的治方研究中的运用相对于其他领域是偏少的, 并且基本上是研究文献资料上出现的治方, 在对名老中医个人治疗经验及用药规律的总结是缺乏的, 因此研究范围广而缺乏针对性, 同时使用该技术的相关软件种类往往是单一的。现在研究者在研究中医方剂时往往采用传统的研究方法, 这就导致在大数据的研究中耗时、耗力甚则无能为力, 同样也难以精准地提取大数据背后的隐藏的潜在关系和规则及缺乏对未知情况的预测。产生这样的现状, 一方面是很多研究者尚未清楚该技术在方剂研究中的优势所在, 思维模式尚未更新;另一方面是很多研究者尚未清楚该技术的操作技能及软件种类及其应用范围。故以后应向更多研究者普及该技术的软件种类、其中的优势及操作技能, 让该技术在临床中使用更广, 产生更大的效益。
参考文献
[1]舒正渝.浅谈数据挖掘技术及应用[J].中国西部科技, 20xx, 9 (5) :38-39.
[2]曹毅, 季聪华.临床科研设计与分析[M].杭州:浙江科学技术出版社, 20xx:189.
[3]王静, 崔蒙.数据挖掘技术在中医方剂学研究中的应用[J].中国中医药信息杂志, 20xx, 15 (3) :103-104.
[4]陈丈伟.数据仓库与数据挖掘[M].北京:清华大学出版社, 20xx:5.
[5]杨玉珠.数据挖掘技术综述与应用[J].河南科技, 20xx, 10 (19) :21.
[6]余侃侃.数据挖掘技术在方剂配伍中的研究现状及研究方法[J].中国医药指南, 20xx, 6 (24) :310-312.
[7]赵睿曦.方证数据挖掘分析张氏骨伤对腰椎间盘突出症的辨证用药规律[J].陕西中医药大学学报, 20xx, 39 (6) :44-46.
[8]李曙明, 尹战海, 王莹.神经根型颈椎病的影像学特点和分型[J].中国矫形外科杂志, 20xx, 21 (1) :7-11.
[9]刘向前, 陈民, 黄广平等.颈项肩臂痛内治古方常用药物的统计分析[J].中华中医药学刊, 20xx, 30 (9) :42-44.
[10]齐兵献, 樊成虎, 李兆和.神经根型颈椎病中医用药规律的文献研究[J].河南中医, 20xx, 32 (4) :518-519.
[11]陈元川, 王翔, 庞坚, 等.单纯口服中药治疗神经根型颈椎病用药分析[J].上海中医药杂志, 20xx, 48 (6) :78-80.
[12]谢辉, _, 潘建科, 等.基于数据挖掘方法的神经根型颈椎病用药规律研究[J].世界中西医结合杂志, 20xx, 10 (6) :849-852.
[13]唐仕欢, 杨洪军.中医组方用药规律研究进展述评[J].中国实验方剂学杂志, 20xx (5) :359-363.