asp网站毕业论文(推荐7篇)
99
2024 / 07 / 23
[摘 要]目前,随着现代科技的发展,互联网已成为当代主流,互联网技术的应用已经是任何一个国家所不能脱离的,经济全球化已成为一个必然的趋势,在这样的一个大数据时代,人民对信息的获取需求呈直线上升的状态。21世纪作为一个信息时代,网络信息的安全防范也显得尤为重要,而Web数据的数据技术,对于网络信息安全防范来说,是一个新的技术运用。本文从Web数据挖掘技术的基本概述入手,分析我国企业在网络信息安全方面存在的问题,最后提出将网络信息安全防范与Web数据挖掘技术进行整合运用。
[关键词]Web数据挖掘技术;网络信息;安全防范
doi: -
引 言
世界是发展的,事物是不断变化的,21世纪是一个大数据时代,互联网技术显得越来越重要。在科技发展的同时,互联网也在家家户户普及,然而网络安全问题却随之而来,人们在运用科技时也在担心网络技术的安全性。鉴于此,本文探讨利用Web数据挖掘技术来控制网络安全,以提高网络信息安全度。
1 Web数据挖掘技术概述
Web使用记录挖掘方式是挖掘网络上的浏览记录,然后进行分析,同时还可以获取其他企业的信息。通过使用Web数据挖掘技术,企业可以进行复杂的操作,然后从网页浏览记录分析出自身企业的受关注度,并了解同行竞争企业的详细信息,寻找自身的不足。
Web数据挖掘技术的含义
Web数据挖掘技术,指的是通过自身的技术,在获取网上资源的同时,寻找到企业感兴趣的信息资料。图1为Web数据发掘技术工作流程。
Web数据发掘技术可以涉及多个领域,通过多种数据挖掘方式,为企业找到有用的`信息资源。整体来说,Web挖掘技术有两种类型,一是建立在人工智能模型的基础上来实现,类似于决策树、分类等;二是建立在统计模型基础上来实现,类似于神经网络、自然计算法等。
Web数据挖掘技术的两种方式
Web数据挖掘技术整体上来说有两种方式,分别为内容挖掘和使用记录挖掘。Web内容挖掘指的是企业可以通过Web挖掘技术,自己从网上寻找对企业有用的信息资源,同时对后台设置进行监控,减少某些重要交易内容的丢失、泄露。企业还可以通过Web挖掘技术,查询某些用户的操作记录,对企业的网络信息安全进行检查审核,从而降低企业信息被不法分子窃取的风险。由于其他企业也有同样的Web数据挖掘技术,因此,企业也不能深入地去探索同行企业的内部信息,但其通过该技术,可以分析其他企业的基本信息资源,然后整合出对自身有用的资源,从而制定企业市场战略。
2 我国企业在网络信息安全方面存在的问题
目前,科技的发展,使全球的政治、经济一体化趋势越来越明显,互联网的进步也使国家企业面临着更多的挑战。我国企业在网络信息安全方面存在的问题也逐步显现,而网络信息安全技术人才紧缺是较为明显的一个问题。
人才紧缺问题
21世纪是一个互联网的世纪,我国目前正在积极地吸收、引进人才,同时也在不断地走出去,各行各业面临的压力也在逐渐变大,要想在快速发展的世界潮流中占据一席之地,我国必须积极发展自己的科技产业。目前,我国的计算机信息技术水平,在总体上还落后于其他很多国家,而在该方面的人才紧缺问题,是目前一个很明显的现象。我国在该领域常常要引进国外技术,受制于人,这也就间接地将自己的弊端暴露于人前,因此,我国要积极培养具有计算机网络技术的高端人员,从而促进该领域不断实现创新。
自身安全技术漏洞问题
除了人才紧缺,我国的网络产品自身还存在许多的安全技术漏洞。从近几年的市场经济发展现状来看,我国很多的电子产品被国外垄断,如苹果、微软等高端电子产品,在我国占有很大的市场份额。我国要想重新将自己的电子产品推向市场,就目前的形势来看,还需要很大的努力,国民崇尚国外产品,不是为了标榜自己的地位,更多的是国外产品的性能确实比我国的要好。因此,通过我国网络产品自身存在的安全技术漏洞可以看出,我国在网络安全技术方面存在许多的不足。
3 网络信息安全防范与Web数据挖掘技术的整合
近几年,网络信息安全问题一直是国民较为关注的一个话题,我国也在该方面加大了防范力度。国家在发展创新互联网技术的同时,也不能忽略其安全问题。网络信息安全,关乎我国企业的发展,是企业重要资料不外漏的重要保护屏障,本文将网络信息安全防范与Web数据挖掘技术进行整合(见图2),旨在提高网络信息环境的安全度,提高我国网络信息安全防范能力。
本文初探Web数据挖掘技术与网络信息安全防范的整合,将分别从4个方面来提高我国的网络信息安全性能。
首先,将存在于网络数据间的关联寻找出来,然后整合交给企业进行分析,企业通过这些关联数据,分析提炼出对自己企业有用的信息,继而制定企业战略,防范风险。
其次,使用Web數据挖掘技术对网络信息进行分类分析。企业应将所有的信息进行综合,然后按照一定的指标分出类别,并对这些不同类别的信息进行整理,方便后续的检索。该项功能主要依靠人工智能来完成,以保证资料能够得到完整的利用。
再次,使用Web数据挖掘技术对网络信息进行聚类分析。企业应将这些具有共同点的信息进行分类,将这些数据分成各个小组,但每一个小组都要有一个共同的类似点,以便于从整体对局部进行分析。
最后,利用Web数据挖掘技术,根据收集到的资源信息的不同点进行分类,分类后根据这些不同点的特征,分析出对自身企业有用的信息。从整体上说,Web数据挖掘技术通过运用其强大的分析能力,可对网络信息进行筛选、整合,企业可再根据这些整合出来的资源信息,为自身制定战略,为企业发展提供一个良好的网络信息环境。
4 结 语
网络技术在给用户带来便利的同时,也给用户的信息安全造成了极大的威胁,科技进步,技术也在不断进步,为了使信息得到最大的保护,网络信息的安全技术要随着科技的进步不断发展,为互联网的运用提供一个完善安全的网络系统。本文通过Web数据挖掘技术,将网络信息安全防范与该技术进行有效整合,提高了我国企业的网络信息安全度,以为我国企业的发展提供一个良好的环境。
主要参考文献
[1]刘波.浅谈数据挖掘技术在临床医学领域中的应用[J].电子世界,20xx(12).
[2]赵炬红,陈坤彦.基于数据挖掘技术的茶叶营销策略分析[J].福建茶叶,20xx(5).
[3]崔道江,陈琳,李勇.智能检索引擎中的网络数据挖掘技术优化研究[J].计算机测量与控制,20xx(6).
[4]王珣.基于Spark平台的大数据挖掘技术研究[J].微型电脑应用,20xx(6)
1.软件工程数据的挖掘测试技术
代码编写
通过对软件数据进行分类整理,在进行缺陷软件的排除工作以后,根据软件开发过程中的各种信息进行全新的代码编写。基于代码编写人员的编写经验,在一般情况,对结构功能与任务类似的模块进行重新编写,这些重新编写的模块应遵循特定的编写规则,这样才能保证代码编写的合理有效性。
错误重现
代码编写完成以后开发者会将这些代码进行版本的确认,然后将正确有效的代码实际应用到适当版本的软件中去。而对于存在缺陷的代码,开发者需要针对代码产生缺陷的原因进行分析,通过不但调整代码内的输入数据,直到代码内的数据与程序报告中的描述接近为止。存在缺陷的代码往往会以缺陷报告的形式对开发者予以说明,由于缺陷报告的模糊性,常常会误导开发者,进而造成程序设计混乱。
理解行为
软件开发者在设计软件的过程中需要明确自己设计软件中每一个代码的内容,同时还需要理解其他开发者编写的.代码,这样才能有效地完善软件开发者的编写技术。同时,软件开发者在进行代码编写的过程中,需要对程序行为进行准确的理解,以此保证软件内文档和注释的准确性。
设计推究
开发者在准备对软件进行完善设计的过程中,首先需要彻底了解软件的总体设计,对软件内部复杂的系统机构进行详细研究与分析,充分把握软件细节,这有这样才能真正实现软件设计的合理性与准确性。
2.软件工程数据挖掘测试的有效措施
进行软件工程理念和方法上的创新
应通过实施需求分析,将数据挖据逐渐演变成形式化、规范化的需求工程,在软件开发理念上,加强对数据挖掘的重视,对软件工程的架构进行演化性设计与创新,利用新技术,在软件开发的过程中添加敏捷变成与间件技术,由此,提高软件编写水平。
利用人工智能
随着我国科学技术的不断发展与创新,机器学习已经逐渐被我国各个领域所广泛应用,在进行软件工程数据挖掘技术创新的过程中,可以将机器学习及数据挖掘技术实际应用于软件工程中,以此为我国软件研发提供更多的便捷。人工智能作为我国先进生产力的重要表现,在实际应用于软件工程数据的挖掘工作时,应该利用机器较强的学习能力与运算能力,将数据统计及数据运算通过一些较为成熟的方法进行解决。在软件工程数据挖掘的工作中,合理化的将人工智能实际应用于数据挖掘,以此为数据挖掘提供更多的开发测试技术。
针对数据挖掘结果进行评价
通过分析我国传统的软件工程数据挖掘测试工作,在很多情况下,传统的数据挖掘测试技术无法做到对发掘数据的全面评价与实际应用研究,这一问题致使相应的软件数据在被发掘出来以后无法得到有效地利用,进而导致我国软件开发工作受到严重的抑制影响。针对这一问题,数据开发者应该利用挖掘缺陷检验报告,针对缺陷检验的结果,制定相应的挖掘结构报告。同时,需要结合软件用户的体验评价,对挖掘出的数据进行系统化的整理与分析,建立一整套严谨、客观的服务体系,运用CodeCity软件,让用户在的体验过后可以对软件进行评价。考虑到软件的服务对象是人,因此,在软件开发的过程中要将心理学与管理学应用于数据挖掘,建立数据挖掘系统和数据挖掘评价系统。
3.结束语
综上所述,由于软件工程数据挖掘测试技术广阔的应用前景,我国相关部门已经加大了对软件技术的投资与开发力度,当下,国内已经实现了软件工程的数据挖掘、人工智能、模式识别等多种领域上的发展。
摘要:通信工程建设项目中进度管理直接影响着工程推进速度与质量,实际管理中受到成本、组织与质量等因素影响,要充分正视相关因素的重要性,在进度设计上依据实际情况做一级、二级、三级的进度计划制定落实,完善进度管理相关制度,保证工作人员综合的专业素养,同时做好相关风险管理,为工程开展提供更多的进度保障。
关键词:通信工程建设;进度管理;策略
进度管理是通过合理科学的方法来保证项目能够依照要求达到项目完成目的,进度管理直接反应了通信工程建设项目管理的水平,甚至影响了工程开始的经济效益与社会效益。需要充分正视进度管理所面临的问题,从而做针对性管理方案与执行的操作,确保工程进度按照标准规范进行。
一、影响通信工程建设项目进度管理的相关因素
1、成本因素。通信工程建设中的成本是保证工程有效完工的基本因素,如果在工程建设初期缺乏科学合理的成本控制,将会导致后期工作无法有效按时完成。而要做到对应的成本控制,则需要对施工相关流程做细致的成本明确分析与把控,对资金运用做严谨的控制,避免资金流失。同时,施工成本也在一定程度上对施工结算起到参考依据的作用,因此需要做好控制与保存,避免后期问题产生。然而当下的成本控制仍旧存于相对较低的效率状态,甚至由于不合理控制导致施工进度严重受到阻滞影响。要做好人力成本控制,提升设备利用效率,做好相关成本因素影响情况分析。
2、组织因素。在施工开展中,需要对应的组织管理合理性,才能确保管理与施工效率的提升。组织因素主要是由于企业管理部门,其中包括项目主管、设计企业、执行经理与施工单位等。企业只有确定科学合理的一套管理方案,才能有效的建立整体的监督控制机制,做好内部结构中的互相监督管理。在企业资金方面可以进行分层管理与相互监督作用,对各部门各岗位人员做明确责任划分。但是在实际的操作中,会由于组织结构杂乱,项目主管独揽大权,施工人员缺乏足够的工作积极性,项目经理无法有效表现其能力。所有组织因素也成为了影响进度管理的重要因素。
3、质量因素。在工程施工中如果忽视的了质量管理,则会导致整体进度受到严重影响。其中施工人员缺乏积极工作热情,从而导致施工质量无法有效提升。其次,机械设备的性能与使用效率无法有效保证,不能有效的依据不同工程特点做对应的设备配备,无法让设备与实际施工环境相对应,无法适应企业自身的经济实力,不能达到较好的施工工艺水平。其三,施工环境也会导致质量问题受到影响。环境会影响施工建设中所存在的周期性与流动性特点。
二、通信工程建设项目中的进度管理策略
1、分级进度计划制定。要依据工程建设情况做对应的分级进度计划。可以分为一级、二级、三级进度计划。首先,一级进度计划可以称作进度总计划。明确进度管理最终目标,同时确定各分项工程所需要的施工起始时间,确保工程内的各分项间达到相互制约的进度计划状态。要确保进度计划与合同、现场管理情况相一致,避免管理中产生互相冲突问题。一般应以甲方为主导做总进度计划的制定,而各分项负责人、总包与分包单位负责人都需要共同参与,提出对应工作的问题与建议,从而提供更为合理科学的进度计划制定依据。当各方对计划表示确定后就可以确定计划并展开后续实施,不可轻易变动。二级进度计划是针对某阶段或者某专业方面的进度做计划,例如机房、塔基、外电项目与配套项目等有关建设内容,计划的制定不能与一级计划相冲突。三级进度计划一般为周度进度计划,是进度计划中的细化安排,确保进度推进的可执行性。
2、建立健全进度管理措施。在管理制度上,要明确人力资源管理、经济管理、技术管理、组织管理以及合同管理方面内容。在人力资源管理上,要充分的保证引入人才的能力,同时做好日常培训考核以及奖惩激励措施来调动人员工作谨慎性与积极性,确保良好的工作状态。经济管理上要落实资金发放使用的科学有效,一方面节省投入成本,另一方面促进工程有序推进,调动工作积极性。技术上要以企业自身经济实力为出发点,尽可能的在能力基础上选择更优质的设备与技术支持,确保施工效率提升。组织管理上,要协调各部门各人员间的友好合作氛围,打通沟通渠道,避免合作间的矛盾冲突。合同管理上,要严格依照合同规定进行,保证施工质量、安全与进度,运用合同为施工开展的有力约束条件与动力。
3、运用合适的风险管理。通信工程管理存在一定的项目风险,进而导致进度受到影响。要严格的依照相关规则进行,建立风险评估管理系统,及时收集信息做风险评估,做好预防管理。对于管理中存在的风险问题做有效的预判,进而在实际操作中做严格控制,将风险问题控制在最低状态。结束语:通信工程建设项目中进度管理直接影响着工程推进速度与质量,实际管理中受到成本、组织与质量等因素影响,要充分正视相关因素的重要性,在进度设计上依据实际情况做一级、二级、三级的进度计划制定落实,完善进度管理相关制度,保证工作人员综合的专业素养,同时做好相关风险管理,为工程开展提供更多的进度保障。
参考文献:
[1]郑念卿.通信工程建设项目进度管理的途径探讨[J].科技致富向导,2015,(7):348-348.
[2]李瑜.通信工程建设项目中的进度管理[J].农家科技(下旬刊),2015,(6):333-333.
摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技
关键词:客户关系管理毕业论文
高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。
关键词:客户关系管理毕业论文
一、数据挖掘技术与客户关系管理两者的联系
随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。
二、数据挖掘技术在企业客户关系管理实行中存在的问题
现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。
1.客户信息不健全
在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。
2.数据集中带来的差异化的忧虑
以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。
3.经营管理存在弊端
从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的`抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。
三、数据挖掘技术在企业的应用和实施
如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。
1.优化客户服务
以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。
2.利用数据挖掘技术建立多渠道客户服务系统
利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。
四、数据挖掘技术是银行企业客户关系管理体系构建的基础
随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。
当前,5G技术在我国依然处于研发早期阶段,其还需要经过外场实验、标准化实验以及技术研究等阶段,进而实现全面而广泛的应用。但是虽然关于5G技术和概念依然处于探讨中,但是对其标准的方向,在产业界和学术界形成了统一的认识。在3G以及4G时代,通信协议之间存在一定的差异,但是在即将到来的5G时代,由于频谱会更加灵活和高效,系统架构和核心技术也将实现进一步融合,因此,5G的发展趋势就是通信标准的统一化。
摘要:数据挖掘是一种特殊的数据分析过程,其不仅在功能上具有多样性,同时还具有着自动化、智能化处理以及抽象化分析判断的特点,对于计算机犯罪案件中的信息取证有着非常大的帮助。本文结合数据挖掘技术的概念与功能,对其在计算机犯罪取证中的应用进行了分析。
关键词:数据挖掘技术;计算机;犯罪取证
随着信息技术与互联网的不断普及,计算机犯罪案件变得越来越多,同时由于计算机犯罪的隐蔽性、复杂性特点,案件侦破工作也具有着相当的难度,而数据挖掘技术不仅能够对计算机犯罪案件中的原始数据进行分析并提取出有效信息,同时还能够实现与其他案件的对比,而这些对于计算机犯罪案件的侦破都是十分有利的。
1数据挖掘技术的功能与应用分析
数据挖掘技术的概念
数据挖掘技术是针对当前信息时代下海量的网络数据信息而言的,简单来说,就是从大量的、不完全的、有噪声的、模糊的随机数据中对潜在的有效知识进行自动提取,从而为判断决策提供有利的信息支持。同时,从数据挖掘所能够的得到的知识来看,主要可以分为广义型知识、分类型知识、关联性知识、预测性知识以及离型知识几种。
数据挖掘技术的功能
根据数据挖掘技术所能够提取的不同类型知识,数据挖掘技术也可以在此基础上进行功能分类,如关联分析、聚类分析、孤立点分析、时间序列分析以及分类预测等都是数据挖掘技术的重要功能之一,而其中又以关联分析与分类预测最为主要。大量的数据中存在着多个项集,各个项集之间的取值往往存在着一定的规律性,而关联分析则正是利用这一点,对各项集之间的关联关系进行挖掘,找到数据间隐藏的关联网,主要算法有FP-Growth算法、Apriori算法等。在计算机犯罪取证中,可以先对犯罪案件中的特征与行为进行深度的挖掘,从而明确其中所存在的联系,同时,在获得审计数据后,就可以对其中的审计信息进行整理并中存入到数据库中进行再次分析,从而达到案件树立的效果,这样,就能够清晰的判断出案件中的行为是否具有犯罪特征[1]。而分类分析则是对现有数据进行分类整理,以明确所获得数据中的相关性的一种数据挖掘功能。在分类分析的过程中,已知数据会被分为不同的数据组,并按照具体的数据属性进行明确分类,之后再通过对分组中数据属性的具体分析,最终就可以得到数据属性模型。在计算机犯罪案件中,可以将按照这种数据分类、分析的方法得到案件的数据属性模型,之后将这一数据属性模型与其他案件的数据属性模型进行对比,这样就能够判断嫌疑人是否在作案动机、发生规律以及具体特征等方面与其他案件模型相符,也就是说,一旦这一案件的'数据模型属性与其他案件的数据模型属性大多相符,那么这些数据就可以被确定为犯罪证据。此外,在不同案件间的共性与差异的基础上,分类分析还可以实现对于未知数据信息或类似数据信息的有效预测,这对于计算机犯罪案件的处理也是很有帮助的。此外,数据挖掘分类预测功能的实现主要依赖决策树、支持向量机、VSM、Logisitic回归、朴素贝叶斯等几种,这些算法各有优劣,在实际应用中需要根据案件的实际情况进行选择,例如支持向量机具有很高的分类正确率,因此适合用于特征为线性不可分的案件,而决策树更容易理解与解释。
2数据挖掘技术在计算机犯罪取证中的具体应用思路
对于数据挖掘技术,目前的计算机犯罪取证工作并未形成一个明确而统一的应用步骤,因此,我们可以根据数据挖掘技术的特征与具体功能,对数据挖掘技术在计算机犯罪取证中的应用提供一个较为可行的具体思路[2]。首先,当案件发生后,一般能够获取到海量的原始数据,面对这些数据,可以利用FP-Growth算法、Apriori算法等算法进行关联分析,找到案件相关的潜在有用信息,如犯罪嫌疑人的犯罪动机、案发时间、作案嫌疑人的基本信息等等。在获取这些基本信息后,虽然能够对案件的基本特征有一定的了解,但犯罪嫌疑人却难以通过这些简单的信息进行确定,因此还需利用决策树、支持向量机等算法进行分类预测分析,通过对原始信息的准确分类,可以得到案件的犯罪行为模式(数据属性模型),而通过与其他案件犯罪行为模式的对比,就能够对犯罪嫌疑人的具体特征进行进一步的预测,如经常活动的场所、行为习惯、分布区域等,从而缩小犯罪嫌疑人的锁定范围,为案件侦破工作带来巨大帮助。此外,在计算机犯罪案件处理完毕后,所建立的嫌疑人犯罪行为模式以及通过关联分析、分类预测分析得到的案件信息仍具有着很高的利用价值,因此不仅需要将这些信息存入到专门的数据库中,同时还要根据案件的结果对数据进行再次分析与修正,并做好犯罪行为模式的分类与标记工作,为之后的案件侦破工作提供更加丰富、详细的数据参考。
3结束语
总而言之,数据挖掘技术自计算机犯罪取证中的应用是借助以各种算法为基础的关联、分类预测功能来实现的,而随着技术的不断提升以及数据库中的犯罪行为模式会不断得到完善,在未来数据挖掘技术所能够起到的作用也必将越来越大。
参考文献
[1]李艳花.数据挖掘在计算机动态取证技术中的应用[J].信息与电脑(理论版),20xx(02):174-176.
引言 数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程。
一、数据挖掘技术 数据挖掘就是指
从数据库中发现知识的过程。包括存储和处理数据,选择处理大量数据集的算法、解释结果、使结果可视化。整个过程中支持人机交互的模式。数据挖掘从许多交叉学科中得到发展,并有很好的前景。这些学科包括数据库技术、机器学习、人工智能、模式识别、统计学、模糊推理、专家系统、数据可视化、空间数据分析和高性能计算等。数据挖掘综合以上领域的理论、算法和方法,已成功应用在超市、金融、银行、生产企业和电信,并有很好的表现。
二、数据挖掘的过程
挖掘数据过程可以分为3个步骤:数据预处理、模式发现、模式分析。
(1)数据预处理。实际系统中的数据一般都具有不完全性、冗余性和模糊性。因此,数据挖掘一般不对原始数据进行挖掘,要通过预处理提供准确、简洁的数据。预处理主要完成以下工作:包括合并数据,将多个文件或多个数据库中的数据进行合并处理;选择数据,提取出适合分析的数据集合;数据清洗、过滤,剔除一些无关记录,将文件、图形、图像及多媒体等文件转换成可便于数据挖掘的格式等。
(2)模式发现。模式发现阶段就是利用挖掘算法挖掘出有效的、新颖的、潜在的、有用的以及最终可以理解的信息和知识。可用于Web的挖掘技术有路径选择、关联分析、分类规则、聚类分析、序列分析、依赖性建模等等。
(3)模式分析。模式分析是从模式发现阶段获得的模式、规则中过滤掉不感兴趣的规则和模式。通过技术手段,对得到的模式进行数据分析,得出有意义的结论。常用的技术手段有:关联规则、分类、聚类、序列模式等。
三、数据挖掘在电力系统负荷预测中的应用
电力负荷预测是能量管理系统及配电管理系统的重要组成部分,是电力系统规划和运行调度的依据,也是电力市场化商业运营所必需的基本内容。负荷预测工作的关键在于收集大量的历史数据,建立科学有效的预测模型,采用有效的算法,以历史数据为基础,进行大量试验性研究,总结经验,不断修正模型和算法,以真正反映负荷变化规律。其过程为:
(1) 调查和选择历史负荷数据资料
多方面调查收集资料,包括电力企业内部资料和外部资料,从众多的.资料中挑选出有用的一小部分,即把资料浓缩到最小量。挑选资料时的标准要直接、可靠并且是最新的资料。如果资料的收集和选择得不好,会直接影响负荷预测的质量。通过建立计算机数据管理系统,利用计算机软件系统来自动管理数据。
(2) 负载数据预处理
经过初步整理,还用于数据分析的预处理,平滑异常值的历史数据和缺失数据的异常数据主要是水平的,垂直的方法附录。正在分析数据之前和之后的两个时间的负载数据作为基准,来设置要处理的数据时,要处理的数据的范围中最大的变化的数据的处理的水平超过该范围时,它被认为是坏的数据,使用平均法平滑变化;垂直负载数据预处理中的数据处理的考虑其24小时的小循环,即,相同的时间的日期不同的负载应具有相似的,同时负载值应保持在一定范围内,校正外的范围内的数据进行处理,在最近几天的坏数据,力矩载荷的意思。
(3) 历史资料的整理
一般来说,由于预测的质量不会超过所用资料的质量,所以要对所收集的与负荷有关的统计资料进行审核和必要的加工整理,来保证资料的质量,从而为保证预测质量打下基础,即要注意资料的完整无缺,数字准确无误,反映的都是正常状态下的水平,资料中没有异常的“分离项”,还要注意资料的补缺,并对不可靠的资料加以核实调整。通过建立数据完整性、一致性约束模型,来建立海量数据集为后面的数据挖掘做好充分的准备。
(4) 建立负荷预测模型
负荷预测模型是统计资料轨迹的概括,预测模型是多种多样的,因此,对于具体资料要选择恰当的预测模型,这是负荷预测过程中至关重要的一步。当由于模型选择不当而造成预测误差过大时,就需要改换模型,必要时,还可同时采用几种数学模型进行运算,以便对比、选择。
(5) 选择算法
选择聚类法又称聚类分析法,它是对一组负荷影响因素数据进行聚类的方法,聚类后的数据即构成了一组分类。聚类的标准是以数据的表象(即数据属性 值)为依据的,聚类的工具是将一组数据按表象而将相近的归并成类,最终形成若干个类,在类内数据具有表象的相似性,而类间的数据具有表象的相异性。聚类的算法也有很多,有遗传算法,划分法,层次法,基于密度方法,基于网格方法等。 四、CURE算法在负荷预测中的应用 CURE算法是一种分层聚类算法。典型的数据点来表示一个具有固定数目的聚类。的CURE算法需要作为参数输入的群集数?。由于CURE聚类的代表点的某些有代表性的,可以发现具有任何尺寸和形状的聚类。同时,在一个集群代表点的选择方式的中心“缩水”排除“噪音”。
历史上第一个数据库负荷预测,数据提取样品。的数据样本聚类,可以分为两种方法:一个是所有样本数据进行聚类,这个方法会使主内存容量是远远不够的,系统无法扫描一次完成。我们使用所有的样本数据被分成多个区域,每个区域的数据进行聚类,使每个分区可以品尝到所有的数据加载到主内存。然后,针对每个分区,使用分层算法的聚类。
电力系统的应用SCADA系统中的数据测量、记录、转换、传输、收集数据,并可能导致故障和负载数据丢失或异常。异常数据的生成是随机的,因此,在数据库中的不确定性的分布,不同类型的异常数据出现单独或在一个特定的时刻,或交叉混合发生在同一天连续,或在相同的连续天期的横分布,以及许多其他场合。异常数据的处理的关键影响的预测结果的准确性。使用两种不同的技术,以删除异常。第一种技术是要删除的集群增长缓慢。当簇的数量低于某一阈值,将只包含一个或两个集群成员的删除,第二种方法是在集群的最后阶段,非常小的集群中删除。
最后对样本中的全部数据进行聚类,为了保证可以在内存中处理,输入只包括各个分区独自聚类时发现的簇的代表性点。使用c个点代表每个簇,对磁盘上的整个数据库进行聚类。数据库中的数据项被分配到与最近的代表性点表示的簇中。代表性点的集合必须足够小以适应主存的大小。
结束语
数据挖掘技术虽然得到了一定程度的应用,并取得了显着成效,但仍存在着许多尚未解决的问题。随着人们对数据挖掘技术的深人研究,数据挖掘技术必将更加成熟,并取得更加显着的效果。
1、数据挖掘技术的概念和实用价值
数据挖掘的概念
所谓数据挖掘,其实就是从大量繁杂的数据中找出对自己发展有益的数据、模型及规律。主要依据事先确定好的商业目标,深入分析和研究各种企业数据,发掘里面隐藏的商业内容,还要在工作中不断提高其科学性。数据挖掘的综合型较强,需要使用诸多专业理论以及技术工具,主要有数据库技术、统计学、机器学习、模型识别、人工智能、神经网络等。
分类
其实质就是对数据进行分门别类。先从数据中挑选出分类完的训练集,然后将其作为依据来设置一个科学的分类模型,还要将杂乱的数据进行综合整理。
估值
估值和分类有很多相同点,其差异在于:分散是对离散型变量进行输出,但估值输出的是连续值,且分类的类别是有数目规定的,但估值却是随意的。
预测
一般情况下,预测要借助分类或估值才能发挥效果,具体说来,就是用分类及估值期间使用的模型来预估未知的变量。检测的目的与其大同小异,但而其结果必须经时间验证,也就是说在很长一段时间后,才可以评估其准确性。
相关性分组或关联规则
要记录好时间类型及发生日期,这样可以为后续的施工提供借鉴。
聚类
就是对各种数据进行整理并且分类,以聚集为类别。两者的主要区别是聚类不需要事先定义好类别,不用借助训练集。
描述和可视化
用归约、概括、图形表示等方式来表示数据。
数据挖掘在电力企业的使用价值
商业领域对于数据挖掘技术的需求较大,因此数据挖掘在多个商业领域得到了大范围的应用。下文便依据电力企业的行业特征来论述一下数据挖掘技术在电力企业中的重要作用。
指导设备更新
在发生了下述两种情况时就要对设备进行更新:首先,电力设施意外毁坏,这便要第一时间更换,一般电力设备监控设施可以检测出这类故障,这样也能够在第一时间进行维修。其次是更换老化的设备,这就需要以经验为依据,例如检查设备的使用年限等,但这种方式并不具有多大的科学性,因为很多设备可能由于保养得当而延长使用年限,如果贸然更换会产生巨大的浪费;还有些设备的使用时间可能不长,但是其性能却已经不满足标准,若不及时更换也会产生巨大的浪费。一般情况下,我们可以借助故障保修、电力耗费及相关电力参数等各种数据来确定电力设备的故障及老化状况,最终确定是否更换设备。
业绩评估
我国的电力企业一直没有一套标准的体系来评价集团公司分公司的成绩。若只评估其所创造的经济利润,则会因各地区的发展有所误差,并且电力行业是与我们的生产生活息息相关的,安全性及其它性能的重要意义远大于利润。但数据挖掘技术却能够综合分析诸多影响因素,通过分析由利润、利润增长率、同行对比、投诉举报、生产成本等数据组成的主题仓库来研究区域或者是自公司的运营情况,并用图表等简洁明了的方式体现出来,为决策提供依据。
指导电力企业的建设规划
最近,我国的广东频繁发生电力供不应求的情况,其主要原因便是没能很好的掌握市场进步的趋势,在电厂的建设及电网建设方面都没能满足市场的需求,这时数据挖掘工作的重要性便得到了很好的体现。将新增用户(报装)、现有用户、用户位置、用户用电量、国家的建设计划等相关资料实行认真的研究分析便可以制定出电力企业的发展计划,有此为指导,才能促进电力行业的飞速发展。
指导电力的生产和购买
我国推出电力企业改革方案后,广东省电力集团便在积极的践行,到01年底已大体完成厂网分离。改革的逐步深化,而言使得我们面临了一些新的问题。例如在电力购买方面,传统的电厂和电网属一个单位,电厂会供给电网充足的电力。可在如今,电网用电时一定要提前购买,但因为电力的鲜明特征即买多少用多少,使得购买时间和购买量无法准确的确定。而借助数据挖掘技术可以很好的解决这一问题。对有关的主体车库进行深入挖掘便可确定需购买的电力总量,并对发电企业的生产计划进行指导。
减少电力损耗,改善电力质量,减少设备损耗
电力产品具有自身的显著特征,主要体现在它不能进行储存,只有按需供给。可是,发电和用电是有着很大差异的,要想保证电力的质量,就必须不断提高设施的安全性,并对其实施科学的调整。现今使用的主要方式是建设蓄能电厂,若电力有多余则要保存起来,等电力供应不足时则用这部分电力,将其进行安排调度并制定合理的疾患,便能实现电力储存技术的灵活调节,实现降低电力浪费,提高电力质量,避免设备的耗损。
2、使用数据挖掘的必要性和可行性
我国电力企业信息化现状使采用数据挖掘技术成为可能
观察以广电企业的现状可以知道,电网的信息化已经有了很大的进步,也就是不再仅仅借助计算机完成统计报表,管理信息也不是单机单项应用工作的时期,其正处在信息化的中级发展环节,企业有自己的局域网,广电集团也已经实现了光纤网的全省覆盖,企业完成信息化之后,能够使内部的管理工作更加高效,如MIS、OA、物资管理、财务管理以及客户服务中心等。能够获得企业的许多基本数据,并使应用平台更加的科学,而企业在进行数据挖掘工作时,便可以将这众多数据作为有效依据。
我国电力企业改革的趋势使采用数据挖掘技术成为必然
我国党政领导集团在积极的转变行业垄断的现状,促进竞争方式的合理化。我国电力企业中已经使用了“厂网分家”模式,这使得发电竞争有了科学的模式,广电集团也已经结束了这部分的工作。接下来便是向电网运转方向转变。为在将来的竞争中保持优势,电力企业一定要尽可能的降低生产经营的成本,这样有利于更好的为客户提供服务,并熟悉自己及竞争企业的实际情况。上述的所有事情,都要使用现代信息技术来解决,而数据挖掘技术又起着极其重要的作用。
3、展望
作为智能系统的心脏,信息通信系统在今后电网业的进步中有着非常积极的意义。现今,我国电网业早已设立了在国内、国际都很先进的'集成系统。三地集中式数据也开始慢慢运转起来,各企业的一级业务面也越来越广,各种数据中心也都开始运转起来,我国电网的数据和种类都开始步入正轨。其“量类时”特征,也在海量、实时的电网业务内有了更大的作用,所以必须对其进行深入研究。
现今,我们通常把电网业务数据归为三种:首先,单位生产的资料,有发电量、电压稳定性等指标等;其次,单位工作中的数据,包括交易价格、用户的需求方面的数据等;最后是单位的管理资料,如ERP、一体化平台、协同办公等方面的数据。我们要熟练了解这诸多数据的特征,然后开展深入的探究,还能推出很多高附加值的服务,这也能促进电网安全性检测的顺利进行,还可以更好的掌控企业的经营、满足用户的需求,使企业的管理水平得到提高。
比如,在设立电力企业的“大营销”模式时,要以满足顾客需求为目标,建立各种服务平台以第一时间满足客户各种需求,如:95588、114等。为了完善服务模式,提高服务质量,应该详细的分析各种数据,使得服务水平和营销能力得到大幅度的提升和改善;分析型数据是进行服务和开展营销的必要前提和重要基础,应该得到足够的重视,对原有的营销组织模式进行查漏补缺,通过借鉴其他单位的成功经验来弥补自己的不不足和缺陷,对各种服务资源进行合理的配置,尽可能让大多数人满意,为了更好的利用数据并提高营销能力,要建立数据监控分析模型;营销数据之间是存在着隐藏关系的,显而易见,这些隐藏信息不容易被发现,为了增强分析数据的全面性、系统性、直观性、便捷性,建立各种系统性算法模型库不仅是极其有必要的,而且是相当重要的,当然这种系统性的算法模型库是针对营销制定的,这样做可以增强把握市场动态的及时性,我们知道,任何类型的营销必定离不开市场,市场是开展营销主要遵循的依据,脱离了市场,营销就会抓不住头脑,因而,算法模型库的建立可以为企业单位创造更多的经济效益和社会效益,增强企业的核心竞争力,扩大企业单位的市场份额,使企业更稳的立足于竞争激烈的市场之上,甚至是处于领头羊的地位,促进国民经济建设,为人民提供更好的服务。
数据有着很好的增值价值,其他的服务也可以通过数据增值价值得到衍生。所以,加大对数据的利用与研究势在必行。把数据当中重要的依据、基础甚至是纽带,沿着这个纽带进行研究与利用。将数据研究和使用的成果合理的运用起来,例如,将其转化为新型的支付方式和消费形态,使客户感受到非同一般的感觉,突破了以往的业务系统仅仅专注于自己内容的方式,电网的生产效率会得到提高,企业的管理水平也会因此得到大幅度的改善与提高。