数学专业本科毕业论文(汇总4篇)

个人学习 13 2023-12-27 22:27:24

数学专业本科毕业论文 第1篇

应用数学专业的最终教学目的在于培养学生逐渐具备运用数学知识解决现实问题的水平与能力,这就要求教师在教学过程中格外重视数学建模在学生学习活动中的重要作用。这既是帮助学生体会到所学应用数学与现实生活紧密联系的有效措施,同时,更是激发学生数学学习兴趣、帮助其进一步深化对于所学数学知识点认识与理解的重要途径。

例如,在学习微分方程模型的相关知识点之后,教师可以带领学生建立一个数学模型:

水污染问题是当今社会所面临的环境问题之一,某学生小组在实践调查研究的基础上得知某纸厂水库中原有的水量为500吨,假设含有5%污染物的废弃水以每分钟2吨的流动速度持续注入该纸厂的水库,那么,从时间t=0算起,多长时间之后该纸厂水库废弃水中的污染物含有量浓度将达到4%(设定为废弃水注入水库后,水库中的水将不再向外排出)?假设废弃水注入水库后,该造纸厂水库中的水又以每分钟2吨的`速度反流出该水库,那么,从时间t=0算起,多长时间之后该纸厂水库废弃水中的污染物含有量浓度将达到4%?并依据计算出的最终结果向社会生活中的用水单位等提出有效控制污染水源的有效措施。

这样就将微分方程这一数学概念置于真实的现实情境之中,有利于学生主观探究能力与创造性学习思维发展,也有利于其更好地掌握应用数学思维的方式。

数学专业本科毕业论文 第2篇

农业经济在我国国民经济当中始终占据着重要位置,对国家经济的发展有着极为重要的影响作用。因此农业经济学也是现代经济学研究的重点内容之一,本文将以此为基础,简单从组合数学、数理统计以及模糊数学的角度出发谈谈应用数学与经济学之间的关系。

1.组合数学。

组合数学也被称之为离散数学,其核心内容是通过使用算法,处理各种离散数据,特别是在计算机技术飞速发展的当今时代,组合数学可以使得计算机在处理离散对象时更加完善。比方说在农业经济学当中需要一名推销员前往N个地区推销农产品,如何才能在确保走遍所有地区的基础上将路程压缩至最短,假设N的数值为20,那么即便使用每秒上亿次速度的计算机处理该问题,也最少需要花费上百年的时间[2].而使用组合数学则可以将计算机计算该类问题的算法进行优化完善,从而大大缩短计算时间,进一步增加此类问题研究的可能性。

2.数理统计。

3.模糊数学。

模糊数学也同样是应用数学当中的重要内容之一,模糊数学顾名思义指的就是专门研究和处理模糊性现象的数学。其中模糊聚类分析、模糊综合评判等是模糊数学当中常用的几种方法,尤其是在农业经济当中,气候条件、灾害探测、品种选择、土地资源分等及其他方面均存在大量的模糊性现象,而通过运用应用数学中的模糊数学则能够按照科学的方式解决各类问题。比方说通常情况下,绿叶数、苗高、根茎的长度和粗细等因素往往直接影响到亚麻的长势与长相,而利用模糊数学当中的模式识别,则可以依照上述因素准确判断出一株亚麻的具体长势[3].再比如说通过模式识别的知识,抽取穗期、有效穗数、株高、百粒重、主穗粒数等特性可以在不知道小麦具体品种的基础上,准确判断出小麦的类型。

由此可见,应用数学与经济学之间有着非常紧密的联系,特别是在农业经济方面,在应用数学的帮助下,利用严谨规范的数据整理以及分析推断方法,不仅可以有效解决各种农业经济问题,同时也加快了现代农业科学建立和发展的进程。相信在未来,应用数学还将在农业经济乃至整个现代经济当中发挥更加重要的影响作用。

数学专业本科毕业论文 第3篇

摘 要:《数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。

关键词:应用数学;走进生活;数学活动

《义务教育数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。引领学生通过自主探究、合作交流等实践活动,发现、理解、掌握数学知识,并在运用所学知识解决实际问题的过程中形成技能,提升能力。下面结合自己的教学实践,谈几点粗浅做法与思考。

一、走进生活,应用有价值的数学知识

数学来源于生活,离开了生活,数学将是一片死海,没有生活的数学是没有魅力的。同样,生活离开了数学,那将是一个无法想象的世界。因此,在教学中,应从学生的生活经验和已有知识出发,巧妙创设真实的生活场境,提供大量的数学信息。这样,既让学生感受到了数学与生活的密切联系,又彰显了数学鲜活的生命力,促使学生萌生主动运用数学解决实际问题的意识。

(一)课前调查,萌发应用意识

教师要善于把日常生活中遇到的问题呈现在学生面前,引领学生用数学的眼光观察生活,为数学知识的学习收集素材,让学生在生活的每个角落都感受到数学的存在,切实体会到数学渗透在我们生活的方方面面,促使学生自觉地将数学与生活联系起来,萌发应用意识。例如,教学“百分率”这一内容,课前,我设计了让学生开展调查活动,了解我们生活中哪些地方可以用百分数,是怎样用的?由此,学生收集了大量的资料:衣物成分含棉量、某种酒的度数、工厂产品的合格率、树木的成活率等。并且由于兴趣盎然,一些学生通过上网查阅或请教父母,了解了其中的意义及在生活中怎样应用。课上,一张张记录着学生收集调查结果信息的纸条,喜滋滋地摆在桌面上,这些是他们对生活知识的收集和提炼。学生结合课前收集的信息和老师提出的问题积极投入到探究知识的过程中,直接切入本课知识重点。在收集信息中,学生了解的是社会,深入的是生活实践,观察能力、逻辑能力和推理能力得以明显提高,求百分率这个知识重点,在学生头脑中也就水到渠成地理解了。所以培养学生收集信息的能力,从日常生活入手学习知识,既激发学生的学习兴趣,又促进对新知识的理解,并为培养学生的实践能力迈出坚实的一步,让他们善于“发现”问题,他们才会善于“解决”问题,同时也培养了学生的应用意识。

(二)创设场景,培养应用意识

现实生活是孕育数学的沃土,学生周围的现实世界应成为探索的源泉,数学知识的学习应当源于学生的现实生活。教学中,教师要着力于研究学生的生活背景,致力于捕捉生活背景与学习材料之间的内在联系,帮助学生主动寻求新知识的生活原型,使学生借助生活中的实际情境来学习、理解、感受数学,为新知识的应用找到生长点。因此,恰当地创设场景,让学生置身于现实生活之中,立足于实际需要中去寻求知识,向学生渗透应用数学的思想,增强学生的实践意识,感受数学应用的广泛性和普遍性。如教学“元、角、分的认识”,我把本课的教学设计成四个层次进行:

(1)活动前,教师为每组学生准备零币(一分、五分、一角、二角、五角、一元、二元、五元等);

(2)活动开始,把准备好的人民币发给学生,让学生自己来认识这些人民币;

(3)活动中,组织学生到校外的“超市”去购买商品,每样商品多少钱(分别用分、角来表示),余、缺多少钱。这样教学不仅使学生认识了元、角、分,知道了1元=10角,1角=10分,会进行换算,而且体验到数学知识与日常生活的密切联系,从而培养了学生喜爱数学,学好数学的情感。

(三)亲历体验,增强应用意识

数学教学应从学生熟悉的生活现实出发,从具体的问题到抽象的概念,得到抽象化的知识后再把它们应用到现实情境中,通过学生的亲身体验,增强学生的应用意识。比如,在家庭生活中,小学生有较为丰富的数学生活背景,如买菜、去超市购物、收存零钱、用好压岁钱等都是学生非常熟悉的生活情节,但学生很少用数学的眼光去观察、分析、判断、选择和策划家庭生活中的数学问题。因此,当学生学习了数学知识后,教师应引导学生用所学的知识分析、解释家庭生活中的数学现象,解决家庭生活中的数学问题,使学生深刻地体会到数学巨大的应用价值和魅力。例如,我在教学“乘法应用题”之后,启发学生按下表把自己或家里买的东西记录下来,并列出算式。

在操作中,学生对“单价、数量、总价”的含义及互相间的数量关系有了进一步的理解,一些学生还从自己的表中发现“当花的钱一样多时,买单价贵的物品就买得少,买单价便宜的物品就买得多”的函数思想。实践证明,只有通过学生自己探究、概括的知识,才能真正纳入他们已有的认识结构,获得深刻的理解,也更便于应用。把学生自己的自主探究、概括活动放到他熟悉的生活中,他会更感兴趣,也易于更快地探究、理解到知识的实质。

二、走近学生,倡导有效的学习方式

“授之以鱼,只供一饭之需;授之以渔,将会受用终身。”教师不仅要教给学生知识,更重要的是要教会学生获取知识的方法和本领,要让学生在自主探索的过程中发现问题,理解问题,分析问题,寻找解决方案,并逐步建构自己的知识结构。

(一)以旧悟新,巧妙迁移

在教学实践中,为了让学生真正掌握学习的主动权,作为教师应把指导学生的学习方法作为教学的首要任务,对每节课都要有明确的学习目标,让学生带着学习任务去学每节课应掌握的知识,同时还注意教给学生学习各种知识的方法。例如,教学“小数乘法”时,在让学生学懂小数乘法意义上,要求学生做到:想、比、算,即想整数乘法计算法则,比整数乘法的意义、计算法则与小数乘法意义、法则有什么相同点和不同点,计算要准确无误。通过分组讨论或同桌相互讨论,使多数学生掌握了这个新知识,但还有少数学生对积的小数点搞不清楚,这时我重点释疑,告诉他们怎样看因数中一共有几位小数,如何从积的右边起数几位、点上小数点,这些学生一下子就明白了。整个教学过程不是学生单纯接受教师的灌输,而是在教师的引领下积极思考,促进了学生由“学会”到“会学”的转化。 (二)操作体验,巧建概念

如何让学生从“学数学”变为“做数学”,是教师面临的新课题。让学生“自主探究、合作交流”,主动获取知识,学会学习,已成为共识。因此,在教学中教师应力求为学生营造一个发挥自主性、能动性的环境和条件,使学生真正成为学习的主人,亲历数学学习过程,在不断的体验与创造中学习。比如,在教学有关概念时,教师要根据教学内容有目的地给学生提供适当的实物或模型进行演示。如教学“认识长方体的面、棱、顶点”等概念时,可让学生准备一个小萝卜、一把小刀,师生一起切萝卜:先直着向下切一刀,把萝卜分成两块,让学生摸一摸其中一块的面;切面朝下,再直着向下切一刀,引导学生观察发现,两个切面相交形成了一条线,这就是棱;最后横着向下切一刀,让学生再观察发现,三个切面相交形成三条棱,这三条棱又相交成了一个点,这就是顶点。学生通过动手操作、观察感知,此时对面、棱、顶点等概念已有初步体验,其感性认识已很丰富。这时教师再出示长方体模型 ,并从模型中抽出长方体的骨架展示在学生的眼前让其观察,学生观察发现长方体有12条棱,每个顶点由3条棱相交而成,它们分别是长方体的长、宽、高,12条棱可以分成3组,每组相对的4条棱的长度相等。再把长方体的6个面展开,学生便直观地看到长方体相对的两个面完全相等等特征。在这一实践活动中学生手脑结合,既建立了概念,又学到了解决问题的策略,发展了智力、培养了实践能力。

(三)以形表数,感悟算理

数学教学中,每一部分知识都有一定的难点,如何突破教学中的难点是帮助学生解决问题的关键。在一些数学知识的教学过程中,教师可以借助几何直观来化解教学难点,使教学难点变得易于理解和掌握。如教学“一个数乘分数”时,理解和掌握分数乘法的计算法则(算理)是本节课的教学难点。为了解决这一问题,教师可以引领学生借助图形来帮助理解。其活动流程设计如下:

(6)请同学们认真观察黑板上各算式,并结合自己动手折纸的过程,看看有什么新的发现,并把你的发现与同桌相互交流。

这个教学过程把一个高度抽象化的知识转化为学生的已有经验,学生通过折纸有效地把形和数紧密地联系起来,灵动地将形转化为数学符号(即算式)。使学生在经历抽象――直观――抽象的探索过程中,在理解其意义的同时,真切感悟了计算分数乘分数时为什么是“分子乘分子,分母乘分母”的道理。

实践证明,“纸上得来终觉浅,绝知此事须躬行”。要想让学生真正理解数学知识,教师务必引领学生经历有层次的数学活动,获得真切的数学实践体验。这就要求教师在教学实践中要积极创造条件,为学生创设生动有趣的生活、操作等活动场景,来帮助学生学习,鼓励学生善于去发现生活中的数学问题,养成运用数学的眼光观察和分析周围事物的习惯,并学会运用所学的数学知识解决实际问题,让学生在学用相融的过程中,最终获得数学素养与生命质量的整体提升。

数学专业本科毕业论文 第4篇

一、课题的来源及意义

通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。

积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。

二、国内外发展状况及研究背景

国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。

三、课题研究的目标和内容

通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。

(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。

(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。

(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。

四、本课题研究的方法

课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。

五、课题的进度安排:

第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)

第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)

第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)

第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)

第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)

上一篇:关于文化的毕业论文(实用10篇)
下一篇:刑毕业论文(共8篇)
相关文章
返回顶部小火箭
滇ICP备2023005910号