开关电源的设计毕业论文(精选3篇)

个人学习 10 2023-10-27 19:55:03

开关电源的设计毕业论文 第1篇

摘要::煤矿企业在实际生产、监控、操作的过程中主要采用电气自动化控制。一套优良的电气自动化控制系统对于保证企业稳定、高效的生产运行起着至关重要的作用,同时电气化控制生产的过程,可以给煤矿生产提供足够的安全保证。文章从电气自动化控制系统的控制方式入手来介绍电气自动化控制在软件硬件方面优化的具体方法,引出对于设备的选型原则。

关键词::煤矿;电气自动化;优化分析

电气自动化控制的技术在煤矿安全生产过程中操控着生产过程的每一个环节,所以要对电气系统进行升级首先就应当对电气化自动控制方法进行升级,同时对于采煤过程中的各个环节进行进一步的效率化控制以及规范处理。为保证采煤系统在工作过程中系统运行的效率和可靠性就要对于井上下供配电系统、通风系统、瓦斯检测系统、综采系统、机运系统以及排水系统等关键点进行重点把握,确保全矿井的安全生产。

1煤矿电气自动化控制过程中对软件的优化过程

电气自动化控制系统应用在煤矿生产的过程中首先需要注意的点就是对于监测系统整体的控制和监测,确保不会在运行过程中出现供电风险,进而导致效率的降低,具体则应当是对于供电系统的经济运行方面加以精确的监控检测,按照煤矿的具体施工情况来对不同模块的电能分配进行细致处理,确保不大量出现电力浪费等。电气自动化过程控制系统可以有效监测煤矿机械运行问题,在杜绝安全事故的同时结合电气控制效果来改善煤矿作业过程中机械运行的情况。优化过程包括软件优化,硬件优化和设备选型的优化过程,见图1。煤矿生产过程中电气自动化控制进行优化的两个主要措施是软件优化和硬件优化,其中软件通常是基于操作系统的一些技术方式来进行调整(如采用DCS控系统,实现全矿全网集中控制),在煤矿电气自动化控制系统当中引用PLC技术来提高软件优化过程,这也对软件优化过程提出了更大的要求。软件优化过程又主要是包括了结构优化和程序优化两个方面。

1.1软件结构优化

软件结构是煤矿电气自动化控制系统框架的主要构成模块,同时软件结构设计的过程首先需要满足煤矿生产过程的要求,因而应当根据工作时环境等实际情况来设计软件结构。软件结构的优化关键在于模块设计,通过模块设计来拓宽软件结构的功能,同时在施工过程中还可以根据煤矿开采的情况随时对软件进行优化,以满足生产要求。软件结构优化的过程可以分为几种类型,首先可以根据煤矿开采的实时情况来将煤矿电气自动化控制系统的软件结构划分为几个功能性的模块,然后对于不同的模块结合实际提出目标,保证模块改进时保持标准结构的同时,采取拓扑方式设置多种情况下的子任务结构模块来促成软件的多样性和普遍适用性。其次,煤矿电气自动化控制系统中的控制程序主动调整运行结构,在确保软件结构的完整性的前提下优化软件,这样可以保证软件结构不会出现漏洞。最后,在已给出任务的条件下,结合任务进行软件结构的调整,以确保软件和煤矿作业的同步性。

1.2软件程序优化

这里软件程序是自动化控制过程中系统所含有的程序。在软件程序优化的过程中要结合设备的更新换代将新增设备及工艺指标引入系统,最重要的就是对于I/O的重新分派,在优化软件程序的过程中,重新编制I/O来满足生产工艺要求,I/O的优化程度可以直接决定软件程序运行的效率,该种方法可以避免程序中出现重复序列,确保了电气自动化控制系统的安全。除此之外软件程序优化的过程中也要考虑到PLC的结合。

2煤矿电气自动化控制过程中对硬件进行的优化

在煤矿电气自动化控制系统应用优化、分析优化过程中,硬件优化直接影响电气控制过程的稳定性。煤矿电气自动化控制系统应用优化分析的过程能够在一定程度上消除电气控制在煤矿施工过程中运行的误差,体现安全控制的原则。

2.1防干扰设计

硬件防干扰设计是基于外界环境影响进行的抗干扰设置,电气自动化控制系统中硬件设施的抗干扰通常包括硬件布线以及抗干扰线路的设置,通常是在线路外部增设屏蔽电缆,消除电气硬件线路之间的干扰,以提高电气硬件线路运行的效率。除此之外就是进行隔离设置,利用变压器隔离设计来减少干扰,利用中性点接地来确保变压器运行的环境。最后则是设计电磁屏蔽来解决电磁干扰。

2.2输入电路

考虑煤矿井下电气自动化控制系统工作的特殊性,优化设计时应控制电气电路输入的方式,降低能耗。煤矿作业能耗较大,应提高电路供应水平。很多企业在线路上添加净化原件来降低脉冲干扰提高供电质量。煤矿输入电源在通常情况下都能够达到容量负载的标准值,在这一过程中应当注意防止电路因为短路而遭到破坏。

2.3输出电路

输出电路设计优化应根据实际情况的指标来进行。若煤矿作业过程中没有有效地控制输出电路,则很容易产生负载不均衡的情况,影响到电能输出效率,甚至给设备带来一系列破坏,所以电气输出电路的设计过程中通常会接入二极管。输出电路虽然高效率运行,但容易发生电荷负载或者电磁干扰,应当在输出电路中安装一定数量的二极管来保证安全生产。

3系统设备选型

电气自动化是设备的选型就直接影响控制控制系统的优化效率。

3.1优化PLC设备

PLC在电气自动化控制系统占主要地位,因而对于PLC设备进行优化可以起到事半功倍的效果。现在市场上的PLC设备多种多样,企业要对于PLC设备进行全面优化就应当选择高性能且全面契合施工要求的PLC设备。通常企业在电气自动化控制系统当中选择的是规格等都居于中等的PLC设备来确保电气系统自动化控制,这样的选择可以在有效监督系统电气运行过程的同时来降低设备优化所需要的成本,节省资源。体积规格处于中等层次的PLC设备一般都能够满足煤矿施工过程中自动化控制的要求标准,与此同时采用中等PLC设备可降低采购成本,进而体现出PLC设备优化过程的意义所在。

3.2优化I/O设备

I/O设备进行优化可显著提高电气自动化控制系统的功能,提供一套科学有效的标准电气控制的模式。I/O点在设备优化过程中占据最为关键的地位,因而首先要对I/O点进行统计,然后据此优化设备,进而提供进一步优化的基础。

4结语

电气自动化控制系统在煤矿运营的过程中占据了核心地位,促进了现代煤矿工业的发展。煤矿运营的过程中电气自动化控制系统优化占据重要地位,保障电气自动化控制系统发展的成熟和多样化确保电气自动化控制的过程,增加电气自动化控制系统在煤矿生产过程中的应用,将使煤矿运营过程效益提高。

参考文献:

[1]王玉英,王文魁.单片机在煤矿电气自动化控制技术中的应用研究[J].电脑知识与技术,20xx(7):8055-8057.

[2]李明.单片机在煤矿电气自动化控制技术中的应用研究[J].煤炭技术,20xx(8):159-160.

[3]卜桂鑫.试论单片机在煤矿电气自动化控制技术中的应用[J].电子制作,20xx(13):213.

[4]苏正友.煤矿电气自动化控制系统的优化设计分析[J].机电一体化,20xx(4):109.

[5]房付玉.电气自动化技术在煤矿生产中的应用[J].产业与科技论坛,20xx(23):242-243.

开关电源的设计毕业论文 第2篇

摘 要:武汉钢铁集团鄂钢公司富裕煤气发电项目新建两台150t/h燃气锅炉控制系统采用浙大中控DCS控制软件实现了设备维护及生产操作人员的远距离访问和监视。本文介绍了燃气锅炉燃烧控制系统、汽包水位控制系统、锅炉送风自动控制系统及锅炉炉膛安全监控系统等的主要特点和控制流程。实践证明,该系统达到了锅炉燃烧工况良好、节能降耗的工艺要求,且运行稳定可靠。

关键词:锅炉自动控制;燃烧双交叉控制;FSSS控制系统

1 概述

锅炉是一种产生蒸汽的热交换设备。它通过煤、油或气等燃料的燃烧过程释放出热能,并通过传热设备把热量传递给水,将水转变为过热蒸汽,过热蒸汽直接供给工业、生活等生产中所需要的热能。武汉钢铁集团鄂钢公司富裕煤气发电项目新建2台150t/h燃气锅炉,锅炉燃烧产生的过热蒸汽部分送至汽轮机用于发电,部分送至外网满足其它用户生产、生活需要。

锅炉控制系统分为燃烧系统、汽水系统、烟风系统及减温减压系统,控制系统主要完成设备操作、设备状态及生产参数的监控功能,汽包水位自动控制调节功能,炉膛负压控制调节功能,锅炉送风风量控制调节功能及热风烧嘴和煤气烧嘴控制调节功能,锅炉上位系统实现了画面显示、设备操作、报警、历史趋势记录及报表打印等功能。

2 系统介绍

燃烧系统

锅炉燃烧介质由高炉煤气及焦炉煤气组成,分三层,每层四路进入锅炉本体混合一定量的热风参与燃烧过程。每个烧嘴处设计有火焰监视器,共12个,用于监视炉膛火焰的持续性及大小,在上层及下层各烧嘴处设计有点火器共8个,每条高炉煤气、焦炉煤气及热风管道上均设计有气动调节阀,通过调节调节阀阀门开度来控制炉膛温度,并在锅炉本体设计有热电偶用于监测炉温。

汽水系统

锅炉汽水系统流程如下:除氧器→高压给水泵→省煤器预热→锅炉汽包→生成不饱和蒸汽→I级过热器→I级过热器集箱→喷水减温器→II级过热器→II级过热器集箱→生成饱和的过热蒸汽→用户。

烟风系统

空气由送风机送至空气预热器进行预热成为热风,热风送至烧嘴与煤气混合燃烧,生成高温烟气,烟气由引风机牵引经过过热器、省煤器、预热器至烟囱排放,并将锅炉燃烧产生的不饱和蒸汽加热成高温高压饱和蒸汽。

3 系统配置

锅炉控制系统分为上位和下位两类系统组成,下位控制系统实现了L0级(现场控制设备级)与L1级(基础自动化系统级)间的网络连接,并预留L2级(过程控制计算机系统级),上位控制系统实现现场显示、储存、报警、打印等功能。

4 控制功能

燃烧控制系统

锅炉燃烧自动调节的基本任务,是使燃料燃烧产生的热量,适应蒸汽负荷的要求,且要保证燃烧经济和锅炉运行安全,为此合理的风煤比才能维持汽包内或出口蒸汽压力在需要的范围内。

对空气和燃料的控制

锅炉用水经省煤器预热后,注入锅炉内,在进水管道内,进行流量、温度、压力测量,送至调节器。在这一调节器中,通过减法器计算出温度差,将前面所测得的流量乘以温差,即可求得进水管道中所注入的水所需的热量。而出口测的热水温度信号送给温度调节电路,温度调节电路将它在与人工设定值水平SP之间进行控制计算,将输出信号作为结果输出,将前面原料加热所需要的热量加到该输出信号中,作为燃料流量的设定值,与燃料流量这一小闭环所检测出此时燃料的流量值,做一差值计算,从而调节燃料控制阀的大小,进而进行热量控制。

燃烧双交叉控制

双交叉燃烧控制是以维持合适的空气、燃烧比值为手段,达到燃烧时始终维持低过剩空气系数,从而保证了较高的燃烧效率,同时也减少了排烟对环境的污染。

双交叉燃烧控制实际上是以炉温调节为主回路,以燃烧流量和空气流量调节并列为副回路的串级调节系统,加上高、低信号选择器组成的带有逻辑功能的比值调节系统。它的主要作用是当炉子负荷变化,以维持炉温在给定值上,而且使燃烧工况始终处于低过剩空气系数的经济合理状况。

汽包水位控制

锅炉汽包水位控制常用的有位式调节和连续调节两种方式。位式调节是根据汽包水位高、低两个位置进行控制的,适用于蒸汽量小于4t/h的燃气锅炉。本锅炉采用三冲量水位自动调节系统。汽包水位三冲量给水调节系统由汽包水位测量变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成。汽包水位信号是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。

炉膛负压调节

炉膛负压自动控制是通过调节引风机入口风门开度,保持炉膛负压在-20~-10pa的微负压状态,保证锅炉安全燃烧。引风机停止后,其风门执行机构需自动关闭。

锅炉送风自动控制

送风自动控制的目的是:使锅炉所投入的燃料在炉膛中燃烧时,自动投入合适的风量,以保证锅炉的经济燃烧。通过煤气压力调节送风压力,进而达到最高的锅炉热效率,烟气含氧量作为总风量的修正值,通过调节送风机变频器频率来调节送风压力。

锅炉过热蒸汽温度自动调节

过热蒸汽温度自动调节的任务是维持过热器出口蒸汽温度在允许范围之内,并保护过热器使其管壁温度不超过允许的工作温度。锅炉过热蒸汽温度调节采用自制冷凝水喷水减温装置,通过调节减温水调节阀门开度来控制集汽集箱和减温器出口蒸汽温度,保证集汽集箱中蒸汽温度在430~450℃范围内。

开关电源的设计毕业论文 第3篇

的结构与工作原理

UCC28019是一种工作在连续导电模式下,具有功率因数校正功能的控制芯片。UCC28019的调控功能经过两个回路完成:(1)内部电流回路。从ISENSE端输入的负极性电压信号经反相器变为正极性信号,该信号在电流放大器作用下输出为ICOMP。将ICOMP电压与来自斜坡信号发生器的信号进行比较,芯片内部RS触发器将其输出的结果作为输入,与其内部65kHz振荡信号共同控制PWM的占空比,功率开关上升的过程恰好超过ICOMP电压的时间,该时间又决定了DOFF,由斩波拓扑方程有DOFF=VIN/VOUT。由于VIN是正弦波,而ICOMP的电压与电感电流具有一阶线性关系,经过控制回路的作用,电感电流与输入电压波形同步,输入电流同为正弦波形且与输入电压保持同相,从而校正了功率因数。(2)外部电压回路。由电源输出电压得到取样电压,将其作为器件由输出脉冲控制其通断。由UCC28019内部结构可知,设tOFF为斜坡电压在VSENSE端的输入,与内部一些比较器相连接,具有开路保护、欠压保护、过压保护以及稳压的功能。连接在COMP端的补偿网络通过电压误差放大器gmv输出的电流进行充放电,这样得到的VCOMP电压可使系统正常运行。VCOMP上的电压可以用来对斜坡信号的斜率及电流放大器的增益进行设置,当外部回路处于稳态时,增益参数可以被自动调整,从而使畸变对输入电流的波形影响较低,使得开关电源拥有较高的功率因数[3,4]。

电路的基本原理及设计

为了符合设计要求,我们将Boost结构DC/DC变换器用于APFC的主电路拓扑结构,UCC28019采用连续导电模式CCM下的平均电流控制模式作为APFC电路的控制方式。平均电流法是将输入电流的平均值通过电流环的调整,和输入电压的正弦波同相位。将输入整流电压信号和输出电压误差放大信号相乘得到电流参考信号,通过比较输入电流信号和基准电流信号,利用电流误差放大器将高频分量的变化平均化。将放大的平均电流误差与锯齿波进行比较,以输出开关Tr的驱动信号,从而确定占空比,最终快速、精确地校正了电流误差。因为电流与电压具有相同波形,所以实现了对功率因数进行校正的目的[4]。,其中J1为交流输入接口,J2为整流部分的接口,J3为UCC2801912V供电接口,J4为负载接口,J5为Boost电子开关接口,JP1为UCC28019芯片,其他为相关电阻、电感、电容以及二极管。

功率因数测量原理及电路设计

通过HWPT07电压互感器将主回路大的交流电转变为小的交流电,然后将该小信号经过具有一定放大倍数的放大器LM358进行放大,再经过由电压比较器TL084构成的过零比较器,将交流信号转为对应的方波信号[5]。同理,首先通过HWCT-5A-5MA电流互感器可得对应的电流方波信号,然后将两路信号输入单片机对两路信号进行捕捉,测得捕捉上升沿时间差,计算出相位差角,进而通过计算得出功率因数值。

上一篇:毕业论文如何能毕业(推荐6篇)
下一篇:工程技术毕业论文(实用6篇)
相关文章
返回顶部小火箭
滇ICP备2023005910号