毕业论文题目软件(共5篇)

个人学习 6 2024-03-13 11:00:27

毕业论文题目软件 第1篇

1.软件工程数据的挖掘测试技术

代码编写

通过对软件数据进行分类整理,在进行缺陷软件的排除工作以后,根据软件开发过程中的各种信息进行全新的代码编写。基于代码编写人员的编写经验,在一般情况,对结构功能与任务类似的模块进行重新编写,这些重新编写的模块应遵循特定的编写规则,这样才能保证代码编写的合理有效性。

错误重现

代码编写完成以后开发者会将这些代码进行版本的确认,然后将正确有效的代码实际应用到适当版本的软件中去。而对于存在缺陷的代码,开发者需要针对代码产生缺陷的原因进行分析,通过不但调整代码内的输入数据,直到代码内的数据与程序报告中的描述接近为止。存在缺陷的代码往往会以缺陷报告的形式对开发者予以说明,由于缺陷报告的模糊性,常常会误导开发者,进而造成程序设计混乱。

理解行为

软件开发者在设计软件的过程中需要明确自己设计软件中每一个代码的内容,同时还需要理解其他开发者编写的.代码,这样才能有效地完善软件开发者的编写技术。同时,软件开发者在进行代码编写的过程中,需要对程序行为进行准确的理解,以此保证软件内文档和注释的准确性。

设计推究

开发者在准备对软件进行完善设计的过程中,首先需要彻底了解软件的总体设计,对软件内部复杂的系统机构进行详细研究与分析,充分把握软件细节,这有这样才能真正实现软件设计的合理性与准确性。

2.软件工程数据挖掘测试的有效措施

进行软件工程理念和方法上的创新

应通过实施需求分析,将数据挖据逐渐演变成形式化、规范化的需求工程,在软件开发理念上,加强对数据挖掘的重视,对软件工程的架构进行演化性设计与创新,利用新技术,在软件开发的过程中添加敏捷变成与间件技术,由此,提高软件编写水平。

利用人工智能

随着我国科学技术的不断发展与创新,机器学习已经逐渐被我国各个领域所广泛应用,在进行软件工程数据挖掘技术创新的过程中,可以将机器学习及数据挖掘技术实际应用于软件工程中,以此为我国软件研发提供更多的便捷。人工智能作为我国先进生产力的重要表现,在实际应用于软件工程数据的挖掘工作时,应该利用机器较强的学习能力与运算能力,将数据统计及数据运算通过一些较为成熟的方法进行解决。在软件工程数据挖掘的工作中,合理化的将人工智能实际应用于数据挖掘,以此为数据挖掘提供更多的开发测试技术。

针对数据挖掘结果进行评价

通过分析我国传统的软件工程数据挖掘测试工作,在很多情况下,传统的数据挖掘测试技术无法做到对发掘数据的全面评价与实际应用研究,这一问题致使相应的软件数据在被发掘出来以后无法得到有效地利用,进而导致我国软件开发工作受到严重的抑制影响。针对这一问题,数据开发者应该利用挖掘缺陷检验报告,针对缺陷检验的结果,制定相应的挖掘结构报告。同时,需要结合软件用户的体验评价,对挖掘出的数据进行系统化的整理与分析,建立一整套严谨、客观的服务体系,运用CodeCity软件,让用户在的体验过后可以对软件进行评价。考虑到软件的服务对象是人,因此,在软件开发的过程中要将心理学与管理学应用于数据挖掘,建立数据挖掘系统和数据挖掘评价系统。

3.结束语

综上所述,由于软件工程数据挖掘测试技术广阔的应用前景,我国相关部门已经加大了对软件技术的投资与开发力度,当下,国内已经实现了软件工程的数据挖掘、人工智能、模式识别等多种领域上的发展。

毕业论文题目软件 第2篇

题目:数据挖掘技术在神经根型颈椎病方剂研究中的优势及应用进展

关键词:数据挖掘技术; 神经根型颈椎病; 方剂; 综述;

1 数据挖掘技术简介

数据挖掘技术[1] (Knowledge Discovery in Datebase, KKD) , 是一种新兴的信息处理技术, 它融汇了人工智能、模式别、模糊数学、数据库、数理统计等多种技术方法, 专门用于海量数据的处理, 从大量的、不完全的、有噪声的、模糊的、随机的数据集中, 提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识, 其目的是发现规律而不是验证假设。数据挖掘技术主要适用于庞大的数据库的研究, 其特点在于:基于数据分析方法角度的分类, 其本质属于观察性研究, 数据来源于日常诊疗工作资料, 应用的技术较传统研究更先进, 分析工具、理论模型与传统研究区别较大。其操作步骤包括[2]:选择数据, 数据处理, 挖掘分析, 结果解释, 其中结果解释是数据挖掘技术研究的关键。其方法包括分类、聚类、关联、序列、决策树、贝斯网络、因子、辨别等分析[3], 其结果通常表示为概念、规则、规律、模式、约束、可视化等形式图[4]。当今数据挖掘技术的方向主要在于:特定数据挖掘, 高效挖掘算法, 提高结果的有效性、确定性和表达性, 结果的可视化, 多抽象层上的交互式数据挖掘, 多元数据挖掘及数据的安全性和保密性。因其优势和独特性被运用于多个领域中, 且结果运用后取得显着成效, 因此越来越多的中医方剂研究者将其运用于方剂中药物的研究。

2 数据挖掘术在神经根型颈椎病治方研究中的优势

中医对于神经根型颈椎病的治疗准则为辨证论治, 从古至今神经根型颈椎病的中医证型有很多, 其治方是集中医之理、法、方、药为一体的数据集合, 具有以“方-药-证”为核心的多维结构。方剂配伍本质上表现为方与方、方与药、药与药、药与剂量, 以及方药与证、病、症交叉错综的关联与对应[5], 而中医方剂讲究君臣佐使的配伍, 药物有升降沉浮, 四气五味及归经之别, 对于神经根型颈椎病的治疗, 治方中药物的种类、炮制方法、用量、用法等都是千变万化的, 而这些海量、模糊、看似随机的药物背后隐藏着对临床有用的信息和规律, 但这些大数据是无法在可承受的时间范围内可用常规软件工具进行捕捉、管理和处理的, 是需要一个新处理模式才能具有更强的决策力、洞察力和流程优化能力, 而数据挖掘技术有可能从这些海量的的数据中发现新知识, 揭示背后隐藏的关系和规则, 并且对未知的情况进行预测[6]。再者, 中医辨治充满非线性思维, “方-药-证”间的.多层关联、序列组合、集群对应, 形成了整体论的思维方式和原则, 而数据挖掘技术数据挖掘在技术线路上与传统数据处理方法不同在于其能对数据库内的数据以线性和非线性方式解析, 尤善处理模糊的、非量化的数据。例如赵睿曦等[7]在研究张氏骨伤治疗腰椎间盘突出症的用药规律时, 选取了100张治方, 因该病病因病机复杂, 证候不一, 骨伤名师张玉柱先生对该病的治则治法、药物使用是不同的。因此他们利用Excel建立方证数据库, 采用SPPS 软件对这些数据的用药频次、药物关联规则及药物聚类进行分析, 最后总结出张氏骨伤治疗腰椎间盘突出症遵循病从肝治、病从血治、标本兼治的原则, 也归纳出治疗三种不同证型的腰突症的三类自拟方。由此看出数据挖掘技术在方剂研究中的应用对数据背后信息、规律等的挖掘及名家经验的推广具有重大意义, 因此数据挖掘技术在神经根型颈椎病的治方研究中也同样发挥着巨大的作用。

3 数据挖掘技术在神经根型颈椎治方中的应用进展

神经根型颈椎病在所有颈椎病中最常见, 约占50%~60%[8], 医家对其治方的研究也是不计其数。近年来数据挖掘技术也被运用于其治方研究中, 笔者通过万方、中国知网等总共检索出以下几篇文献, 虽数量不多但其优势明显。刘向前等[9]在挖掘古方治疗神经根型颈椎病的用药规律时, 通过检索《中华医典》并从中筛选以治疗颈项肩臂痛为主的古方219首并建立数据库, 对不同证治古方的用药类别、总味数、单味药使用频数及药对 (组) 出现频数进行统计, 总结出风寒湿痹证、痰湿阻痹证、寒湿阻滞证、正虚不足证的用药特点, 得出解表药、祛风湿药、活血化瘀药、补虚药是治疗颈项肩臂痛古方组成的主要药物。古为今用, 该研究对于现代医家在治疗该病中有很好的借鉴和参考意义。齐兵献等[10]检索CNKI (1980-20xx年) 相关文献中治疗神经根型颈椎病的方剂建立数据库, 采用统计软件这些治方常用药物使用频次频率、性味频率、归经频率分析比较, 治疗神经根型颈椎病的中药共计99味, 使用频次479味次;所用药物种类依次以补益药、活血化瘀药、祛风湿药运用最多, 其中药味以辛、苦为主, 药性以温、寒为主, 归经以肝、脾、心为主, 而本病以肝肾亏虚, 气血瘀滞为主, 临床以补益药、活血化瘀药、祛风湿药等中药运用最多。这对于医家治疗该病选用药物的性味、归经等具有指导意义。陈元川等[11]检索20xx年1月至20xx年3月发表的以单纯口服中药治疗神经根型颈椎病的有关文献, 对其中的方剂和药物进行统计、归类、分析, 最终纳入32首方剂, 涉及111味中药, 补气药、发散风寒药、活血止痛药、补血药等使用频次较高;葛根、白芍、黄芪、当归、桂枝等药物使用频次较高, 证实与古方桂枝加葛根汤主药相同, 且该方扶阳解表的治法与该研究得出的扶正祛邪的结果相吻合, 同时也证实石氏伤科强调治伤科病当“以气为主, 以血为先”等正确性。所以大数据背后的规律和关系在很多方面古今是一致的, 同时数据依据的支持也为现代神经根型颈椎病治疗提供有力的保障。谢辉等[12]收集20xx至20xx年10月3日的166张治疗神经根型颈椎病的治方建立数据库, 采用关联规则算法、复杂系统熵聚类等无监督数据挖掘方法, 利用中医传承辅助平台 (TCMISS) 软件分析处方中各种药物的使用频次、药物之间的关联规则、核心药物组合和新处方, 从中挖掘出治疗该病中医中的常用药物、药对, 阐明了治疗该病以解肌散寒药、补气活血药、祛风胜湿药和温经通络药为主, 治法主要包括解肌舒筋、益气活血和补益肝肾, 这一方面很清晰明了地展示了药物使用频率、药物之间的联系, 证实其与很多古代经典中治疗神经根型颈椎病的治则、治法及用药规律是吻合的, 是临床用药的积累和升华, 可有效地指导临床并提高疗效;另一方面也为中药新药的创制提供处方来源, 指导新药研发[13]。

4 小结

数据挖掘技术作为一种新型的研究技术, 在神经根型颈椎病的治方研究中的运用相对于其他领域是偏少的, 并且基本上是研究文献资料上出现的治方, 在对名老中医个人治疗经验及用药规律的总结是缺乏的, 因此研究范围广而缺乏针对性, 同时使用该技术的相关软件种类往往是单一的。现在研究者在研究中医方剂时往往采用传统的研究方法, 这就导致在大数据的研究中耗时、耗力甚则无能为力, 同样也难以精准地提取大数据背后的隐藏的潜在关系和规则及缺乏对未知情况的预测。产生这样的现状, 一方面是很多研究者尚未清楚该技术在方剂研究中的优势所在, 思维模式尚未更新;另一方面是很多研究者尚未清楚该技术的操作技能及软件种类及其应用范围。故以后应向更多研究者普及该技术的软件种类、其中的优势及操作技能, 让该技术在临床中使用更广, 产生更大的效益。

参考文献

[1]舒正渝.浅谈数据挖掘技术及应用[J].中国西部科技, 20xx, 9 (5) :38-39.

[2]曹毅, 季聪华.临床科研设计与分析[M].杭州:浙江科学技术出版社, 20xx:189.

[3]王静, 崔蒙.数据挖掘技术在中医方剂学研究中的应用[J].中国中医药信息杂志, 20xx, 15 (3) :103-104.

[4]陈丈伟.数据仓库与数据挖掘[M].北京:清华大学出版社, 20xx:5.

[5]杨玉珠.数据挖掘技术综述与应用[J].河南科技, 20xx, 10 (19) :21.

[6]余侃侃.数据挖掘技术在方剂配伍中的研究现状及研究方法[J].中国医药指南, 20xx, 6 (24) :310-312.

[7]赵睿曦.方证数据挖掘分析张氏骨伤对腰椎间盘突出症的辨证用药规律[J].陕西中医药大学学报, 20xx, 39 (6) :44-46.

[8]李曙明, 尹战海, 王莹.神经根型颈椎病的影像学特点和分型[J].中国矫形外科杂志, 20xx, 21 (1) :7-11.

[9]刘向前, 陈民, 黄广平等.颈项肩臂痛内治古方常用药物的统计分析[J].中华中医药学刊, 20xx, 30 (9) :42-44.

[10]齐兵献, 樊成虎, 李兆和.神经根型颈椎病中医用药规律的文献研究[J].河南中医, 20xx, 32 (4) :518-519.

[11]陈元川, 王翔, 庞坚, 等.单纯口服中药治疗神经根型颈椎病用药分析[J].上海中医药杂志, 20xx, 48 (6) :78-80.

[12]谢辉, _, 潘建科, 等.基于数据挖掘方法的神经根型颈椎病用药规律研究[J].世界中西医结合杂志, 20xx, 10 (6) :849-852.

[13]唐仕欢, 杨洪军.中医组方用药规律研究进展述评[J].中国实验方剂学杂志, 20xx (5) :359-363.

毕业论文题目软件 第3篇

1、大数据概述

大数据用来描述和定义信息爆炸时代所产生的海量数据,它是计算机和互联网互相结合的产物,计算机实现了信息的数字化,互联网实现了信息的网络共享化。随之兴起的则是从海量数据中挖掘预测出对人类行为有效的方法和结果,即数据挖掘技术[1]。数据挖掘(Datamining)指从大量的数据中通过算法搜索隐藏于其中的信息的过程,是一门跨多个领域的交叉学科,通常与人工智能、模式识别及计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。其特点为:海量数据寻知识、集成变换度量值、分析模式评效果、图形界面来展示[2]。

2、大数据时代下的高校机房现状

顺应时代潮流的发展,各高校都开设有计算机专业,非计算机专业也在大一或大二时期开设公共计算机课程,计算机成为教育领域内不可或缺的教学设备,随着高校的进一步扩招,教育事业的不断更新发展,学校的机房建设也随之增多,其任务由原来的面向计算机专业发展到面向全校的所有专业开设公共计算机教学、承担各种计算机考试等多项任务。因此机房管理系统在日常教学和考试任务中积累了海量数据,一般这些数据都保存在主服务器上仅供查询使用[3]。利用数据挖掘技术,对学校机房信息管理系统所积累的大量学生上机数据进行深入分析与挖掘,将挖掘得到的预测结果辅助学生成绩管理决策,能合理利用机房资源,提高学生成绩管理质量。本文利用关联规则,从现有的机房信息管理系统中收集到的海量学生上机记录数据中挖掘出隐藏在数据中的学生上机规律和上机效率,进而预测学生的期末考试成绩,提前告知,学生可以在随后的学习中通过人为干预学习过程:比如挖掘预测出某生成绩将会较差,则可以在其后的学习中调整学习方式和学习态度,以修正期末考试结果,提高学习效率和考试通过率,为以后的就业做好铺垫,因此不管是对于当前利益还是长远利益,都有深远的意义。

3、数据挖掘阶段

1)定义问题:明确数据挖掘的预期目标。本次挖掘目标旨在从海量机房学生登录信息中找出能预测成绩的相关规则。

2)数据准备:提取数据挖掘的目标数据集,并进行预处理[4]。本次挖掘数据对象为吉首大学设备中心六楼公共计算机机房的学生上机信息表,并检查数据的有效性、一致性、完整性,并去除噪声,进行预处理。

3)数据挖掘:根据上个步骤所提取数据的特点和类型选择相应合适的算法,并在预处理过的数据集上进行数据挖掘。根据问题定义,本次选择关联规则算法Apriori算法,进行关联规则发现并预测。

4)分析挖掘结果:解释评价数据挖掘的结果,并将其转换成能被用户所理解的规则。

5)运用规则:通过分析挖掘结果,可以适当进行人工干预,修正学习行为,使得最终结果达到理想学习效率。

4、数据挖掘在机房管理系统中的应用

关联规则算法

Apriori算法采用逐层搜索的迭代方法,不需要复杂的理论推导,易于实现,是利用挖掘布尔关联规则频繁项集的一种算法。基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的'是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来[5]。

关联结果分析

以吉首大学实验室与设备管理中心为例,吉首大学实验室与设备管理中心下设置的公共计算机实验教学中心,负责学校公共计算机实验室建设与管理,组织实施公共计算机实验教学与开放,完成基于计算机平台进行的计算机等级考试、普通话测试、各类社会化考试等测试工作。其中承担公共计算机教学的机房共有7间,每个机房平均配置95台学生用计算机和一台教师教学用计算机,每台电脑上都安装有奥易机房管理软件,学生每次上机都必须通过奥易软件登录界面输入自己的学号和密码才能进入系统使用计算机,从而收集到学生的上机登录时间、离开时间,教师端可以利用奥易软件对任意学生电脑端进行调换、抓屏、控制屏幕、考试、答疑等操作,所有数据存储在机房管理端的后台数据库中,通过调用后台数据库中的学生上机情况数据,进行挖掘分析。由于数据量庞大,所以采用从起始顺序抽样的方法,抽取出20xx年11月5日的部分学生上机的相关数据,去除不完整、不一致、有缺失的数据,进行预处理,为达到预测挖掘目标提供正确的数据源。表1中的数据前六列是从奥易软件后台数据库中提取到的原始数据,我们设置第二、三、五列数据与学习情况有关联。将这些数据存在于整合表中,剔除学号异常的记录,即只要是学号异常,强制设定其上机情况为较差(异常学号学生,应为重修生,是学习重点关注对象),为了方便系统分析,将关联整合后的数据转化为布尔类型。登录时间:S1:10:00;S2:迟到五分钟;S3:迟到十分钟;S4:迟到十分钟以上。学号:N1:正常学号;N2:异常学号。下课时间:E1:正常下课时间;E2:提前五分钟下课;E3:提前五至十分钟下课;E4:提前十分钟以上下课。利用关联算法产生频繁项集情况分析Q:Q1:优秀;Q2:良好;Q3:一般;Q4:较差。利用Apriori算法挖掘关联规则,可以得到学生上机情况规律:S1,E1→Q1;(S2,E2)/(S1,E2)→Q2/Q3;S4,E4→Q4评价结果:按照正常上课时间上机并且坚持不早退的同学学习情况为优秀;上课准时但是提前五分钟之内下课的同学学习情况为良好;上课迟到五分钟以内且下课也提前五分钟的同学学习情况为一般;上课迟到十分钟以上并且下课早退十分钟以上的同学学习评估为较差。如果利用关联算法得出某个学生的学习情况有三次为较差,就启动成绩预警,提示并干预该生以后的上机学习,督促其学习态度,提高学习效率,以避免期末考试挂科现象。

5、结束语

借数据挖掘促进治理主体多元化[6],借关联分析实现决策科学化[7].,本文利用关联规则思路和算法,将吉首大学设备中心机房中存在的大量学生上机情况数据进行分析挖掘,尝试从学生上机相关数据中预测其学习情况,并根据预测结果有效提示学生的期末考试成绩走向,引导该生在随后的学习应该更加有效,以达到避免出现最坏结果,从而提高期末考试通过率。

参考文献:

[1]李涛,曾春秋,周武柏,等.大数据时代的数据挖掘——从应用的角度看大数据挖掘[J].大数据,20xx(4):57-80.

[2]王梦雪.数据挖掘综述[J].软件导刊,20xx(10):135-137.

[3]袁露,王映龙,杨珺.关于高校计算机机房管理与维护的探讨[J].电脑知识与技术,20xx(18):4334-4335.

[4]李明江,唐颖,周力军.数据挖掘技术及应用[J].中国新通信,20xx(22):66-67+74.

[5]胡文瑜,孙志挥,吴英杰.数据挖掘取样方法研究[J].计算机研究与发展,20xx(1):45-54.

[6]黄梦桥,李杰.因素挖掘法在投资学课程中的教学实践[J].吉首大学学报:自然科学版,20xx(4):80-83.

[7]尹鹏飞,欧云.基于决策树算法的银行客户分类模型[J].吉首大学学报:自然科学版,20xx(5):29-32.

毕业论文题目软件 第4篇

1理论研究

客户关系管理

客户关系管理的目标是依靠高效优质的服务吸引客户,同时通过对业务流程的全面优化和管理,控制企业运行成本。客户关系管理是一种管理理念,将企业客户视作企业发展最重要的企业资源,采用企业服务优化等手段来管理客户关系。客户关系管理并不是单纯的信息技术或者管理技术,而是一种企业生物战略,通过对企业客户的分段充足,强化客户满意的行为,优化企业可盈利性,将客户处理工作上升到企业级别,不同部门负责与客户进行交互,但是整个企业都需要向客户负责,在信息技术的支持下实现企业和客户连接环节的自动化管理。

客户细分

客户细分由美国学者温德尔史密斯在20世纪50年代提出,认为客户细分是根据客户属性将客户分成集合。现代营销学中的客户细分是按照客户特征和共性将客户群分为不同等级或者子群体,寻找相同要素,对不同类别客户心理与需求急性研究和评估,从而指导进行企业服务资源的分配,是企业获得客户价值的一种理论与方法。因此我们注意到,客户细分其实是一个分类问题,但是却有着显著的特点。

客户细分是动态的企业不断发展变化,用户数据不断积累,市场因素的变化,都会造成客户细分的变化。所以客户细分工作需要根据客户情况的变化进行动态调整,

减少错误分类,提高多次细分中至少有一次是正确分类的可能性。

受众多因素影响

随着时间的推移,客户行为和心理会发生变化,所以不同时间的数据会反映出不同的规律,客户细分方法需要在变化过程中准确掌握客户行为的规律性。

客户细分有不同的分类标准

一般分类问题强调准确性,客户关系管理则强调有用性,讲求在特定限制条件下实现特定目标。

数据挖掘

数据挖掘就是从大型数据库数据中提取有价值的、隐含的、事前未知的潜在有用信息。数据挖掘技术不断发展,挖掘对象不再是单一数据库,已经逐渐发展到文件系统、数据集合以及数据仓库的挖掘分析。

2客户细分的数据挖掘

逻辑模型

客户数据中有着若干离散客户属性和连续客户属性,每个客户属性为一个维度,客户作为空间点,全部客户都能够形成多为空间,作为客户的属性空间,假设A={A1,A2,…Am}是一组客户属性,属性可以是连续的,也可以离散型,这些属性就形成了客户m维属性空间。同时设g是一个描述客户属性的一个指标,f(g)是符合该指标的客户集合,即为概率外延,则任一确定时刻都是n个互不相交集合。在客户价值概念维度上,可分为“有价值客户”“潜在价值客户”“无价值客户”三种类型,定义RB如下:(1)显然RB是一个等价关系,经RB可分类属性空间为若干等价类,每个等价类都是一个概念类,建立客户细分,就是客户属性空间和概念空间映射关系的建立过程。

客户细分数据挖掘实施

通过数据库已知概念类客户数据进行样本学习和数据挖掘,进行客户属性空间与概念空间映射的自动归纳。首先确定一组概念类已知客户集合。首先确定一个映射:p:C→L,使,如果,则。,求p(c)确定所属概念类。数据部分有客户数据存储和概念维数据构成,客户数据存储有企业全部内在属性、外在属性以及行为属性等数据,方法则主要有关联规则分析、深井网络分类、决策树、实例学习等数据挖掘方法,通过对客户数据存储数据学习算法来建立客户数据和概念维之间的映射关系。

客户细分数据分析

建立客户动态行为描述模型,满足客户行为非确定性和非一致性要求,客户中心的管理体制下,客户细分影响企业战术和战略级别决策的生成,所以数据挖掘要能够弥补传统数据分析方法在可靠性方面的缺陷。

客户外在属性

外在属性有客户地理分布、客户组织归属情况和客户产品拥有情况等。客户的组织归属是客户社会组织类型,客户产品拥有情况是客户是否拥有或者拥有哪些与其他企业或者其他企业相关产品。

内在属性

内在属性有人口因素和心理因素等,人口因素是消费者市场细分的重要变量。相比其他变量,人口因素更加容易测量。心理因素则主要有客户爱好、性格、信用情况以及价值取向等因素。

消费行为

消费行为属性则重点关注客户购买前对产品的了解情况,是客户细分中最客观和重要的因素。

数据挖掘算法

聚类算法

按照客户价值标记聚类结果,通过分类功能,建立客户特征模型,准确描述高价值客户的一些特有特征,使得企业在之后的市场活动中能够迅速发现并抓住类似的高价值客户,全面提高客户的整体价值水平。通常都采用中心算法进行客户的聚类分析,分析涉及的`字段主要有客户的基本信息以及与客户相关业务信息,企业采用中心算法,按照企业自身的行业性质以及商务环境,选择不同的聚类分析策略,有主属性聚类分析和全属性聚类分析两类。主属性聚类分析是企业根据在企业标度变量中选择主要弧形作为聚类分析变量。通常区间标度变量选用的度量单位会对聚类分析结果产生很大影响,选择的度量单位越小,就会获得越大的可能值域,对聚类结果的影响也就越大。

客户分析预测

行业竞争愈加激烈,新客户的获得成本越来越高,在保持原有工作价值的同时,客户的流失也受到了企业的重视。为了控制客户流失,就需要对流失客户的数据进行认真分析,找寻流失客户的根本原因,防止客户的持续流失。数据挖掘聚类功能同样能够利用在客户流失数据分析工作中,建立基于流失客户数据样本库的分类函数以及分类模式,通过模型分析客户流失因素,能够获得一个最有可能流失的客户群体,同时编制一个有针对性的挽留方案。之后对数据进行分析并利用各种数据挖掘技术和方法在多个可供选择的模型中找出最佳模型。初始阶段,模型的拟合程度可能不理想,但是随着模型的不断更换和优化,最终就有可能找出合适的模型进行数据描述并挖掘出流失数据规律。通常模拟模型都通过数据分析专业和业务专家协作完成,采用决策树、贝叶斯网络、神经网络等流失分析模型,实现客户行为的预测分析。

3结语

从工业营销中的客户细分观点出发,在数据挖掘、客户关系管理等理论基础上,采用统计学、运筹学和数据挖掘技术,对客户细分的数据挖掘方法进行了研究,建立了基于决策树的客户细分模型,是一种效率很高的管理工具。

毕业论文题目软件 第5篇

一、数据挖掘概述

(一)数据挖掘

数据挖掘(DataMining)指的是,在大量的、不规则的、随机的、复杂的、有噪声的实际应用数据中,获得一些信息和知识,能够对用户祈祷潜在作用的效果的过程。将数据挖掘用通俗的话来描述就是在数据库中发现潜在有用的知识发现(KDDKnowledgeDiscoveryinDatabase)。在这个定义中主要包含了以下几方面的含义:首先数据源的特性是大量、随机、不规则、噪声;信息是客户所感兴趣的对象;选取的知识必须是在可接受、可理解、可运用的范围内的,并不是全部符合要求的都可以,对于问题要有一定的针对性。也就是说对于所发现的知识的筛选是有一定的约束和限制条件的,同时也要符合用户的理解和学习能力,最好还能够用通俗的语言来表达最终的结果。

(二)Web数据挖掘

Web数据挖掘实际上是属于数据挖掘的范畴的。概括的来说,Web数据挖掘的数据库特定的就是Web服务器上的数据文件,从中发现用户感兴趣并有所应用潜能的知识。Web数据挖掘主要针对的就是页面内容、页面之间的结构、用户访问信息、电子商务等内在信息,通过数据挖掘技术来获得有价值的信息。Web数据和传统数据库存在着很大的差异,传统的数据库都是在一定的数学模型范围之内的,通过模型来描述其中的数据;但是web数据库相对来讲就要复杂许多,没有通用的模型来描述数据,每个网页都有其独特的数据描述方式,丙炔数据自身都是可变的、动态的。因而,Web数据虽然具有一定的结构性,不能用架构化的形式来表达,也可以称其为半结构化的数据。Web数据的最大特点就是半结构化,加上Web数据的信息量极大,导致整一个数据库成为一个巨大的异构数据库。

二、网络数据挖掘的类型

(一)网络内容挖掘

网络内容挖掘的对象是网页的内容、数据、文档,这通常也是网页在急性搜索的时候需要考察的访问对象。由于网络信息繁多,按照信息源的不同可以划分为Gopher、FTP、Usenet等已经隐藏到WWW形式之后的资源,我们称之为WWW信息资源,存储于数据库管理信息系统中的数据,以及不能直接访问的私人数据。按照网络资源的形式又可以划分为文本、图像、音频、视频等数据。

(二)网络结构挖掘

网络结构挖掘的对象就是Web潜在的链接结构模式。这种类型最早出现在引文分析,在建立web自身的链接结构模型的时候借鉴了网页链接和被链接数量以及对象。在网页归类的时候往往会采用这种模式,还能够得到不同网页间相似度及关联度的相关数据。网络结构挖掘能够帮助用户在相关领域中找到最有分量的网站。

(三)网络用法挖掘

网络用法挖掘的目的在于掌握用户的一系列网络行为数据。网络内容挖掘、网络结构挖掘针对的都是网上的原始数据,而网络用法挖掘针对的是用户在上网过程中的人机交互的第二手数据,主要有用户的网页游览记录、代理服务器日志记录、网页维护信息、用户简介、注册信息、聊天记录、交易信息等等。

三、网络经济环境下数据挖掘在工商管理中的运用步骤

(一)识别网站访问者的特征信息

企业对电子商务网站的`数据进行挖掘的第一步,就是要明确访问者的特点,找出访问者使用的条款特征。访问者特征主要有入口统计、心理状态和技术手段等要素。人口统计并不是一成不变的,比如家庭地址、收入、购买力等因素都会不断改变。心理状态指的是在心理调研中展现出的个性类型,比如对商品的选择去世、价格优惠心理、技术兴趣等。随着访问者数量的增加,相关数据也会不断累积。条款的交互信息主要包括购买历史、广告历史和优选信息。网站统计信息是指每次会话的相关要素。公司信息主要包括访问者对接的服务器所包含的一系列要素信息。

(二)制定目标

开展网上交易的最大优势在于企业对于访问者的反应有着更好的前瞻性。当厂商的目标是明确且具象的时候,就能够通过数据挖掘技术得到较好的效果。企业通常可以设定以下的目标:网页访问者的增加量;类此网页访问的浏览时间增加;每次结账的平均利润;退换货的减少;品牌知名度效应;回头客的数量等等。

(三)问题描述

开展电子商务的企业最关键要面对的一个问题就是如何进行商品的传播,要实现网页的个性化又要将商品的信息完整的展现给顾客,就需要了解同一类访问者的共有特征、估计货物丢失的数据并预测未来行为。所有这一切都涉及寻找并支持各种不同的隐含模式。

(四)关联分析

对顾客大量的交易数据进行关联规则分析,能够发现顾客购买组合商品的趋势。关联分析指的是在一次浏览或者会话中所涉及到的商品,也叫做市场分析。若电子商务网站能够将这些商品放在同一个网页中,就能够提高顾客同时购买这些商品的概率。如果在关联的一组商品中有某一项商品正在进行促销,就能够带动其他组合产品的销量。关联也能够用在静态的网站目录网页。在这种情况下,网站排序的主要依据是厂商选择的且是网站所要查看的第一页内容,将其以及其相关的商品信息放在网页的首页。

(五)聚类

聚类指的是将具有相同特征的商品归为一类,将特征平均,以形成一个“特征矢量”。聚类技术能够确定一组数据有多少类,并用其中一个聚类来表示其余大多数数据。通常在企业分析访问者类型的时候使用聚类技术。

(六)决策树

决策树描绘的是都想决定在做出的一系列过程中的问题或数据点。比如做出购买电视机这一决定就要经历对于电视机的需求、电视机的品牌、尺寸等等问题,最终确定好买哪一台电视机为止。决策树能够较一个决策过程进行系统的排序,以便选出最优的路径来尽可能减少决策的步骤,提高决定的质量和速度。许多企业将决策树体系添加到自己的产品选择系统中,能够帮助访问者解决特定问题。

(七)估计和预测

估计是对未知量的判断,预测是根据当前的趋势做出将来的判断。估计和预测使用的算法类似。估计能够对客户空白的项目做到预判。如果网站想知道某个访问者的收入,就可以通过与收入密切相关的量估计得到,最后通过与其有相同特征的访问者的收入来衡量这个访问者的收入和信用值。预测是对未来事项的判断。尤其是在某些个性化网页中显得尤为重要。企业通过数据的汇总增进对客户的了解。即使是对以往事件的分析中也可以得到有效的信息。预测能够对访问者的特征作出总结和汇总,以便企业能够找出更有针对性的组合商品来满足客户的需求。Web数据和传统数据库存在着很大的差异,最大特点就是半结构化,加上Web数据的信息量极大,导致整一个数据库成为一个巨大的异构数据库。能够帮助用户在特性是大量、随机、不规则、噪声的信息中发现感兴趣的对象。

上一篇:财产继承毕业论文(通用10篇)
下一篇:用意象来写毕业论文(实用8篇)
相关文章
返回顶部小火箭
滇ICP备2023005910号